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Abstract

Quantum Monte Carlo Simulations of Ultracold Bosons in a Double Well

by

Joel Christopher Corbo

Doctor of Philosophy in Physics

University of California, Berkeley

Professor K. Birgitta Whaley, Co-chair

Professor Dmitry Budker, Co-chair

We present path integral ground state (PIGS) quantum Monte Carlo calculations for the
ground state (T = 0) properties of repulsively interacting bosons in a three-dimensional
external double well potential over a range of interaction strengths and potential parameters.
We focus our calculations on ground state number statistics and the one-body density matrix
in order to understand the level of squeezing and fragmentation that the system exhibits
as a function of interaction strength, and we compare our PIGS results to both a standard
and an improved two-mode model and a recently-proposed eight-mode model. In general,
the various models agree with the PIGS simulations for weak interactions, but the full
quantum Monte Carlo treatment is required to correctly predict the amount of squeezing and
fragmentation exhibited for strong interactions. One novel and somewhat surprising result
from our simulations involves the relationship between squeezing and interaction strength:
rather than a monotonic relationship between these quantities, we find that for certain double
well barrier heights the squeezing increases as a function of interaction strength until it
reaches a maximum, after which it decreases again. We also see a similar relationship between
fragmentation and interaction strength. We propose novel physical mechanisms to account
for this behavior.
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Chapter 1

Introduction

The history of Bose-Einstein condensation stretches back over a hundred years. By the
end of the nineteenth century, physics had seemingly reached an apex. Newton’s laws of
motion and gravitation, Maxwell’s laws of electromagnetism, and the laws of thermodynamics
were all more or less complete, and they appeared to be sufficient to accomplish the main
goal of physics: describing and predicting the behavior of the physical world. However,
there were some loose ends—phenomena that could not be adequately explained with known
physics—including the nature of the “luminiferous ether” through which light was thought
to propagate and the nature of the “blackbody radiation” emitted by bodies in thermal
equilibrium with their surroundings. Far from being minor issues, these two loose ends were
the first hints of the two greatest revolutions in physics in the twentieth century: relativity
and quantum mechanics.

In 1900, Max Planck developed a law that described blackbody radiation measurements
extremely well [1]. However, the constants in the law had to be empirically determined because
there was no satisfying way to derive them from the laws of classical physics. This remained
the case until 1924, when Satyendra Nath Bose developed a theory of the statistical mechanics
of photons that could be used to derive Planck’s law [2]. Albert Einstein later extended
Bose’s work to massive particles [3, 4], thus developing the theory of a Bose gas governed by
Bose-Einstein statistics. This extension led to the prediction of a Bose-Einstein condensate
(BEC), a new state of matter in which a dilute gas of bosons is cooled to temperatures very
close to absolute zero, causing a large fraction of the bosons to occupy the systems lowest
quantum state and thereby allowing for quantum effects on a macroscopic scale.

Although Fritz London proposed Bose-Einstein condensation as an explanation for su-
perfluidity in 4He in 1938 [5, 6], the strong interaction between helium atoms dramatically
reduces the number of atoms in the condensed state; therefore this system is not considered
to be a true BEC. In 1959, Charles Hecht proposed that one should try to observe BEC in a
dilute, weakly-interacting atomic gas, arguing that spin-polarized hydrogen would be good
candidate such an observation [7]. However, it wasn’t until 1995 that true Bose-Einstein
condensates were created in the laboratory in atomic gases of rubidium [8], sodium [9], and
lithium [10, 11]. This amazing experimental triumph resulted in Eric Cornell, Wolfgang
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Ketterle, and Carl E. Wieman receiving the 2001 Nobel Prize in Physics “for the achievement
of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental
studies of the properties of the condensates.” Since that time, there has been an explosion of
studies, both experimental and theoretical, into the preparation, properties, and practical
uses of Bose-Einstein condensates.

One very fruitful area of BEC research involves studying a BEC trapped in an optical
lattice, a trap consisting of a periodic series of potential maxima and minima created by
using lasers to generate standing electromagnetic waves. Optical traps are nice to work with
in the laboratory because the trap parameters, such as the number, depth, and separation of
the minima, are easy to control. They also allow for the investigation of many-body, often
macroscopic quantum phenomena, such as the coherence between the atoms in different
lattice sites [12] and the transition between Mott insulator and superfluid regimes [13].

1.1 Applications of a BEC in a Double Well Potential
The special case of a trap with two minima is known as a double well potential, and a BEC
in such a potential can be generated using the well-established technique of splitting a single
BEC in a single well “lattice” by raising a barrier in the center of the well using laser beams
of the appropriate wavelength and crossing angle [14–17]. The properties of a BEC in a
double well potential are of great fundamental and practical interest, with broad implications
for a variety of open questions in many-body condensed matter physics and applications in
quantum computation. For instance, recent studies regarding quantum liquids subjected to
confinement and disorder have shown that the transitions to superfluidity and to Bose-Einstein
condensation can occur at different temperatures and that, even at zero temperature, the
superfluid and condensate fractions can be different from one another [18, 19]. From a more
practical perspective, schemes have been proposed for using condensed bosons in double wells
as qubits for quantum computation, in analogy to Josephson charge qubits (in this context,
the double well system is thought of as an “atomic Josephson junction”) [20, 21].

One potentially powerful application of the double well system involves its use in atom
interferometry. Conventional atom interferometers work on a similar principle to light inter-
ferometers: a hot beam of atoms is split and made to propagate along two different paths,
and when recombined the relative phase shift between the beams results in a measurable
interference pattern. Because atoms are composite objects that are sensitive to many envi-
ronmental phenomena like gravitational, electric, and magnetic fields, atom interferometers
can be used to accurately measure quantities as diverse as rotations [22], the gradient of the
Earth’s gravitational field [23], and fundamental constants like ~/me [24].

However, to make atom interferometry practical for commercial use requires the interfer-
ometers to be small in size. This is possible by using atom chips, small silicon wafers with
etched-on wires that can generate magnetic fields, to manipulate small clouds of BEC (see [25]
for a thorough theoretical description). By splitting a BEC into a double well geometry
and then recombining the two components, one can observe the interference patterns that
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result from the differential phase shifts accumulated by the spatially separated BECs. Several
groups have build functional atom chip-based, double well interferometers [26, 27].

Of course, there is uncertainty associated with making interferometric measurements. The
lower bound on this uncertainty for an atomic BEC interferometer with no special correlations
between the atoms is the standard quantum limit of N−1/2, where N is the total number of
particles involved in the measurement. However, it is possible to induce correlations between
the atoms that can reduce the uncertainty to the Heisenberg limit of N−1 [28–30]. Initial
proposals to reduce this uncertainty called for using superpositions of macroscopic quantum
states known as Schrödinger cat states, in which the atoms are in an equal superposition of
all being in one well and all being in the other. However, sensitivity to dissipation was found
to limit the benefits of using these states [31].

This problem may be avoided by using squeezed states, which are entangled many-body
states that have a distribution of particles with respect to some variable of interest that
is narrower than a binomial distribution [32, 33]. In the context of the double well, the
differential number distribution (the difference in the number of particles on the two sides of
the barrier) is the relevant distribution and the amount of squeezing is proportional to µ/δ,
where µ is the chemical potential of the particles and δ is the tunneling strength between the
wells. Hence, one can increase squeezing either by increasing the interaction strength between
the particles (and hence the chemical potential) or by decreasing the tunneling strength. The
former can be achieved via a Feshbach resonance [34, 35], in which external magnetic fields
are used to change the effective interparticle interaction strength over, in principle, many
orders of magnitude [36], and the latter can be achieved by simply increasing the barrier
height. Beginning in 2001, experimental efforts have succeeded in realizing squeezed states
with cold atoms in the laboratory [12, 37–40].

1.2 Theoretical Studies of a BEC in a Double Well
Potential

To date, the double well problem has been studied extensively using mean-field methods
within a two-mode approximation, in which the many-body state of the system is computed
in terms of the two lowest one-body states of the system [41–49]. In general, the mean-field
approach is restricted to the limit of weak particle interactions, where squeezing is less
significant. Indeed, of the studies listed here, only [48, 49] considered effects beyond the
usual one-body tunneling (J) and onsite interaction (U) terms (i.e., they included two-body
tunneling terms), and only [43, 44] explicitly considered squeezing. Recent theoretical work
on understanding the double well in the context of an eight-mode approximation [50] has
uncovered some deficiencies of the two-mode model: even in regimes where one would naively
expect only the lowest two single particle modes to contribute based on energy arguments, the
ground state can contain components of higher modes, and these modes have the potential
to dramatically influence squeezing. This suggests that an analysis which takes into account
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the exact many-body nature of the system is necessary to fully understand squeezing in the
double well system [51, 52].

In addition to squeezing, the symmetry of the double well potential allows for fragmen-
tation [53]. In a canonical BEC, we can express the system’s many-body wavefunction in
such a way that all of the particles are in the same one-body state. However, under the
right conditions, the BEC can exhibit fragmentation, in which multiple one-body states are
macroscopically occupied by the particles in the condensate. When population is further
distributed over single-particle states with non-macroscopic occupation, the BEC is said to
be depleted. Experimental studies have confirmed the presence of depletion in an atomic
BEC in an optical lattice [54] as well fragmentation in a quasi-1D atomic BEC in a magnetic
waveguide [55]. Much theoretical effort has also gone into understanding fragmentation [56,
57], including studies of fragmentation in a double well [45–47]. In particular, [45] predicted
that the amount of fragmentation observed in a double well system would increase with the
height of the barrier.

1.3 Dissertation Overview
In this dissertation, we present a systematic study of the phenomena of squeezing and
fragmentation for a Bose-Einstein condensate in a three dimensional double well potential
over a range of interaction strengths and barrier heights. We first analyze the properties
of the condensate in the double well in the context of the two- and eight-mode models.
One fundamental difference between this and previous two-mode work is that we explicitly
examine well geometries that exhibit appreciable overlap in the one-body wavefunctions
localized in the left and right wells rather than assuming that they are nearly isolated from
each other. One particularly surprising observation that we have made in our study of these
models is the existence of an optimal interaction strength that maximizes squeezing. This is
in stark contrast to the predictions of the two-mode model with no overlap between the wells
for which squeezing monotonically increases with interaction strength.

Unfortunately, the eight-mode model is only tractable for small numbers of particles, so we
need a better method for computing condensate properties for stronger interaction strengths.
To do so, we employ here the full many-body formalism of quantum Monte Carlo (QMC)
by evaluating the ground state properties of the BEC using the path integral ground state
(PIGS) method [58–60]. PIGS allows us to move beyond the range of validity of mean-field
methods and into the regime of strongly interacting systems. We determine the amount of
squeezing and fragmentation present in the BEC as a function of interaction strength and
compare with the predictions of the two- and eight-mode models in order to understand
when, how, and why these approximate models break down.

The dissertation is organized as follows. In Chapter 2, we review the theoretical background
necessary for the rest of the dissertation, including squeezing and fragmentation. In Chapter 3,
we analyze squeezing and fragmentation for the double well in the context of the two-mode
model, and in Chapter 4 we do the same thing in the context of the eight-mode model. In
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Chapter 5 we review the PIGS QMC method in the context of the system of interest: strongly
interacting bosons in a double well potential. In Chapter 6, we review the squeezing and
fragmentation results of QMC calculations for this system and compare them with the two-
and eight-mode predictions in order to understand the new physics we observe. Finally, we
comment on some ongoing work relating to entanglement entropy in Appendix A.
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Chapter 2

Background: BEC, Squeezing, and
Fragmentation

This chapter provides the theoretical background that underlies the rest of this dissertation.
We begin with a brief review of Bose-Einstein condensation in a noninteracting gas. We
then introduce the Hamiltonian for the interacting, double-well BEC system and discuss the
approximations that go into modeling the particle interactions, and the general features of
its ground state, and some standard methods for approximating and computing the ground
state. Finally, we introduce and discuss squeezing and fragmentation and derive results that
will be useful in later chapters.

2.1 Bose-Einstein Condensation
Recall from quantum mechanics that there are two basic types of particles in nature, bosons
and fermions, which are distinguished by their spin: a boson has spin that is an integer
multiple of ~ while a fermion has spin that is a half-integer multiple of ~. Additionally, the
wavefunction of a system of N bosons must be symmetric under the exchange of any two
particles, while for fermions the wavefunction must be antisymmetric:

ψB/F (. . . , ri, . . . , rj, . . .) = ±ψB/F (. . . , rj, . . . , ri, . . .). (2.1)

In the case of non-interacting particles, this symmetry implies that multiple bosons can exist
in the same single-particle state while multiple fermions cannot. To illustrate this, suppose
we have a system of two noninteracting particles. Their wavefunction can be written as

ψB/F (r1, r2) =
1√
2

(φa(r1)φb(r2)± φb(r1)φa(r2)), (2.2)

where the set of states φi(r) consists of the single-particle eigenstates for whatever potential
the particles are experiencing. Notice that if a = b (i.e., the particles are in the same state),
this wavefuntion vanishes for fermions but not for bosons.
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Bose-Einstein condensation (BEC) is a phenomenon that occurs when a gas of bosons is
cooled to temperatures sufficiently low that a large fraction of the bosons occupy the system’s
lowest quantum state. In the case of noninteracting bosons, this state is the single-particle
ground state of the system (we will defer discussion of interacting bosons until Section 2.2.2
and of how to characterize condensation in an interacting system until Section 2.4). The
fraction of particles in the condensed state depends on the temperature of the system relative
to the condensation temperature Tc and the density of states for the system’s external
potential.

The Bose-Einstein distribution function gives the average occupation of a single-particle
state i for a system of N non-interacting bosons with no internal degrees of freedom as

ni =
1

e(εi−µ)/kT − 1
, (2.3)

where εi is the energy of the state i and µ is the chemical potential. Notice that we must
have that µ ≤ εi in order for the occupation of the state i to be nonnegative. If we define
the ground state to have zero energy (i.e., ε0 = 0), this means that µ ≤ 0. We can be more
definitive about the behavior of µ by considering Eq. (2.3) for i = 0. In that case, some
algebra gives

µ = kT ln

(
n0

1 + n0

)
. (2.4)

At high temperatures, the particles will be distributed over all of the states, so n0 ≈ 0 and
µ→ −∞. For T = 0, all of the particles will condense to the ground state, so n0 = N and
µ = 0. Thus, the condensation temperature is defined as the highest temperature for which
µ = 0 or, alternatively, the lowest temperature for which n0 ≈ 0.

In order to compute the number of particles in the ground state as a function of tempera-
ture, we need to know the system’s density of states g(ε), which is a measure of the number
of states the system has between energies ε and ε+ dε given an particular external potential.
The density of states often has a power law form:

g(ε) = Cηε
η−1. (2.5)

For a noninteracting system in a d-dimensional box, η = d/2, while for a noninteracting
system in a d-dimensional harmonic oscillator, η = d. The coefficient Cη can be computed
in each of these cases, but the details are not important for our purposes. Given Eqs. (2.3)
and (2.5), we can express the total number of particles in the system as

N = N0(T ) +Ne(T )

= N0(T ) +

∫ ∞
0

n(ε, T )g(ε) dε

= N0(T ) + Cη

∫ ∞
0

εη−1

e(ε−µ)/kT − 1
dε

= N0(T ) + CηΓ(η) Liη(e
µ/kT )(kT )η, (2.6)
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where Γ(x) is the gamma function and Lin(x) is the polylogarithm [61], which is related
to the Riemann zeta function by Lin(1) = ζ(n). Notice that the integral over ε does not
contribute to the number of particles in the ground state N0 because g(ε) → 0 as ε → 0.
When T = Tc, then µ = 0 and N0(Tc) = 0, so we have

N = CηΓ(η)ζ(η)(kTc)
η, (2.7)

or

kTc =

(
N

CηΓ(η)ζ(η)

)1/η

. (2.8)

With this result, we can rewrite Eq. (2.6) for T < Tc to give us the occupation of the ground
state as a function of T :

N0

N
= 1−

(
T

Tc

)η
. (2.9)

We can also use Eq. (2.8) to help us estimate the temperature at which condensation
should happen. As an example system, let’s take the experiment described in [8], which used
a 3-dimensional harmonic trap. Then, η = 3 and

C3 =
1

2~3ωxωyωz
. (2.10)

For the experiment in question, ωz = 120 Hz, ωx = ωy = 120/
√

8 Hz, and N ≈ 4× 106. Using
these values, Tc ≈ 70 nK.

For the rest of this dissertation, we shall ignore the effects of finite temperature and
work at T = 0. At that temperature, the non-interacting ground state is given simply
by ψg(r1, . . . , rN) = φ0(r1) · · ·φ0(rN), where φ0(r) is the single-particle ground state of the
appropriate potential. At any higher temperature, the non-interacting ground state would
be more complicated because it would include particles in states of higher energy than the
single-particle ground state due to the extra thermal energy in the system.

2.2 The Many-Body Double Well System
As discussed in Chapter 1, the system we are interested in studying is an interacting Bose gas
in a three-dimensional double well trap. In order to understand the behavior of the system at
T = 0, we need to be able to compute the many-body ground state of the system. We start
with the Hamiltonian for N bosons of mass m interacting pairwise in an external potential:

Ĥ =
N∑
j=1

(
− ~2

2m
∇2
j + Vext(rj)

)
+

N∑
j<k

Vint(rj, rk). (2.11)

Notice that we have already made our first simplifying assumption: we assume that the
interactions between the particles are only two-body, i.e., we ignore three- or higher-body
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Figure 2.1: The z component of the external potential for α = 4/81 a−2
ho ≈ 0.05 a−22

ho . The
height of the barrier (V0 = mω2

hoαL
4/2) is 2/81 ~ωho ≈ 0.025 ~ωho, 32/81 ~ωho ≈ 0.395 ~ωho,

and 2 ~ωho for L = aho, 2 aho, and 3 aho, respectively. The curvature parameter (Cz = 4αL2)
is 16/81 ≈ 0.2, 64/81 ≈ 0.8, and 16/9 ≈ 1.8 for L = aho, 2 aho, and 3 aho, respectively.

interactions. This assumption is justified because the atomic gases used in experiments are
sufficiently dilute that interactions between atoms are dominated by two-body effects. In the
next two subsections, we discuss the details of the external and interaction potentials.

2.2.1 The External Potential

For the external potential, we use a three-dimensional double well potential of the form

Vext(r) =
1

2
mω2

ho

(
x2 + y2 + α

(
z2 − L2

)2
)
, (2.12)

where ωho is the characteristic harmonic trap frequency in the xy plane, α characterizes the
height of the barrier between wells at z = 0, and 2L is the distance between the minima of
the wells (see Figure 2.1). In terms of these parameters, the height of the barrier V0 = Vext(0)
is given by mω2

hoαL
4/2; V0 grows with increasing α or increasing L. Similarly, we can define

a parameter Cz that characterizes the curvature of the minima in the z-direction relative to
the x- and y-directions by expanding the potential about z = ±L:

Vext(r)|z=±L =
1

2
mω2

ho

(
x2 + y2 + 4αL2(z ∓ L)2 +O((z ∓ L)3)

)
. (2.13)

Then, Cz = 4αL2 and also grows with increasing α or increasing L. For reasons that we will
discuss in Chapter 4, we restrict our attention in this dissertation to α = 4/81 a2

ho ≈ 0.05 a2
ho

and L = aho, 2 aho, and 3 aho. Table 2.1 lists values of V0 and Cz for these values of α and L,
as well as the energies of the first four states of the double well to give a sense of where they
lie relative to the height of the barrier. These states will be relevant to the construction of
models for the double well system in Chapters 3 and Chapter 4.
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Energy [~ωho]
L [aho] Cz φ0(z) φ1(z) φ2(z) φ3(z) V0

1 0.20 0.167 0.594 1.220 1.946 0.025
2 0.79 0.297 0.482 1.026 1.614 0.395
3 1.78 0.634 0.637 1.681 1.801 2

Table 2.1: Single-particle energies of the ground and first three excited states of the z part of
the double well potential, as well as the height of the double well barrier and curvature of
the double well minima, for α = 4/81 a−2

ho and various L. Note that these energies do not
include the contribution from motion in the x and y degrees of freedom of the state.

To give a realistic sense of the magnitude of the parameters of the external potential, we
use the experiment described in [26]. The experiment used 23Na atoms and had a trap with
L = 6.5µm, ωho/2π = 615 Hz, and V0 = h × 4.7 kHz (equivalently, α = 6.1 × 10−9 nm−2).
In general, we will present our results in terms of the system’s characteristic length aho =
(~/mωho)1/2 and energy Eho = ~ωho. For [26], aho = 845 nm and Eho = 2.54 peV, so
L = 7.7 aho, V0 = 7.6Eho, and α = 0.26 a−2

ho . These values are comparable to those that we
use in this dissertation.

2.2.2 The Interaction Potential

As noted earlier, we will assume that the atomic gas that makes up our BEC is sufficiently
dilute that we can ignore all but two-body particle interactions. Even with this simplification,
the forces felt by two interacting neutral atoms are complicated. At short distances, one
can approximate the strong Coulomb repulsion of the atoms’ electrons by a hard sphere
interaction, while at long distances, the interaction is dominated by the van der Waals force,
which goes like r−6. For notational convenience, let’s define the separation between two
atoms by rij = |rij| = |ri − rj|. Then we can model the interparticle potential by

Vint(ri, rj) =

{
∞ rij < rc

− C
r6

rij > rc
, (2.14)

where rc is the characteristic distance at which the Coulomb repulsion dominates.
This potential is still relatively complicated, but it can be further simplified by taking

into account the fact that the collisions between atoms are occurring at very low energy
because the system is at ultracold temperatures. Recall from quantum scattering theory that
the wavefunction for a system that consists of a plane wave scattering from a spherically
symmetric potential is given at long distances by [62]

ψ = eikz + f(θ)
eikr

r
, (2.15)



CHAPTER 2. BACKGROUND: BEC, SQUEEZING, AND FRAGMENTATION 11

where f(θ) is the scattering amplitude and the energy of the state is given by

E =
~2k2

2m
. (2.16)

At low energy, then, k → 0. One can show that f(θ) approaches a constant, −a, in the
k → 0 limit [62]. The constant a is known as the s-wave scattering length. In this limit, the
wavefunction (2.15) is only a function of the separation between the atoms, and reads

ψ(ri, rj) = 1− a

rij
. (2.17)

This is the same result that one would find if one computed the wavefunction for two particles
interacting via a hard sphere interaction:

Vint(ri, rj) =

{
∞ rij < a

0 rij > a
. (2.18)

Hence, at very low energy we can use the hard sphere interaction potential in place of
whatever complicated potential best models the interparticle interactions at high energy, as
long as we choose the appropriate value of a. Conceptually, the scattering length encodes all
of the low energy behavior in a two-body interaction.

It is instructive to study a particular potential in detail to get a sense of the order of
magnitude of the length scales involved in this argument. For the potential (2.14), one can
compute the scattering length exactly [63]:

a = rvdW
Γ(3/4)

2
√

2Γ(5/4)

(
1− tan

(
r2
vdW

2r2
c

− 3π

8

))
(2.19)

where rvdW =
(

2Cm
~2
)1/4. For a typical dilute atomic gas, rc ≈ 10 aB, rvdW ≈ 100 aB,

a ≈ 400 aB, and n−1/3 ≈ 4000 aB, where aB is the Bohr radius. Hence, we see that the
scattering length is larger than the short-range features of the potential while being much
smaller than the average separation between the atoms.

There is a second useful way of expressing the hard sphere potential (2.18). The wave-
function of two scattering hard spheres satisfies

(∇2 + k2)ψ(rij) = 0, (2.20)

for rij > a, provided that we also set ψ(rij) = 0 for rij < a. One can show that this is
equivalent to [64]

(∇2 + k2)ψ(rij) = 4π
tan(ka)

k
δ(rij)

(
ψ(rij) + rij

∂

∂rij
ψ(rij)

)
. (2.21)
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In the k → 0 limit and assuming that ∂ψ(rij)/∂rij does not diverge at the origin, this equation
becomes

(∇2 + k2)ψ(rij) = 4πa δ(rij)ψ(rij). (2.22)

We can rewrite this as

−~2∇2

2mr

ψ(rij) +
4π~2a

2mr

δ(rij)ψ(rij) =
~2k2

2mr

ψ(rij), (2.23)

where mr = m/2 is the reduces mass of the system. This takes the form of Schrödinger’s
equation, with a contact potential [65, 66]

Vint(ri, rj) =
4π~2a

m
δ(rjk). (2.24)

We use this contact potential instead of the hard sphere potential (2.18) in calculations of
the BEC ground state in the context of the multimode models described in Chapters 3 and
4, although we use the true hard sphere potential in our quantum Monte Carlo simulations,
as described in Chapter 5.

Feshbach Resonance

In this dissertation, we focus on studying the ground state properties of atomic gas BECs
as a function of the scattering length, which, as we have seen, provides a measure of the
strength of the interactions between the atoms at ultra low energies. One of the motivations
for looking at the system this way is that the scattering length is actually highly tunable in
the laboratory due to the phenomenon of Feshbach resonance.

A Feshbach resonance [34, 35] is a resonance of a many-body system between a bound
state and a scattering state of the system. Suppose that two atoms are interacting with
each other via an interaction potential Vo(rij) such that they are in a scattering state |s〉
with energy Es with respect to this potential. Because Es ≥ limrij→∞ Vo(rij), we refer to
this as an open channel. Let’s denote the scattering length associated with the state |s〉
as as. Suppose further that the atoms could also interact via a second potential Vc(rij) of
higher energy, and that this potential supports a bound state |b〉 of energy Eb ≈ Es. Because
Eb < limrij→∞ Vc(rij), we refer to this as a closed channel. See Figure 2.2 for an energy
diagram for these channels.

In general, degrees of freedom internal to the pair of atoms, e.g., their spin state, determine
the (single) channel through which they interact and therefore their scattering properties.
However, if there is a coupling between the open and closed channels, then the presence of the
bound state |b〉 in the closed channel can modify the scattering length for the scattering state
|s〉 in the open channel. This comes about because the atoms in the state |s〉 can temporarily
scatter into |b〉 as an intermediate state before decaying back into the state |s〉; this alters as
to second order in the coupling strength. The closer Es and Eb are to each other, the stronger
the shift in as, so if one can control the energy of the bound state, one can in principle alter
as over a large range of values.
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Figure 2.2: Energy diagram depicting the potential energy as a function of interatomic
distance rij for the open (red) and closed (blue) channels in a model Feshbach resonance.
The total kinetic energy of the atoms is zero, which allows the system to be in a scattering
state of the open channel but not of the closed channel. However, there is a bound state in
the closed channel with energy Eb close to zero.

We now make this qualitative description quantitative. The total Hilbert space of the
system can be divided into two subspaces: the one that contains the scattering state |s〉 and
the one that contains the bound state |b〉. If these are the only two states we consider, then
of course these subspaces only have one element each (we can always generalize this to larger
Hilbert spaces for more complicated situations). We can then explicitly write these states
as basis vectors of the total Hilbert space by defining |s〉 =

(
1
0

)
and |b〉 =

(
0
1

)
. Then we can

write the atoms’ interaction Hamiltonian in the total Hilbert space as

Ĥint = Ĥo + Ĥc + Ĥoc

=

(
γo 0
0 0

)
+

(
0 0
0 γc

)
+

(
0 γoc
γ∗oc 0

)
, (2.25)

where Ho is the Hamiltonian for the open channel, Hc is the Hamiltonian for the closed
channel, Hoc is the Hamiltonian for the coupling between the open and closed channels; we
have schematically illustrated the structure of these three Hamiltonians in basis spanned by
|s〉 and |b〉.

Now, suppose we want to compute 〈s|Ĥint|s〉 to second order in the perturbation Ĥoc. We
find

〈s|Ĥint|s〉 = 〈s|Ĥo + Ĥc|s〉+ 〈s|Ĥoc|s〉+
|〈b|Ĥoc|s〉|2

Es − Eb

= 〈s|Ĥo|s〉+
|〈b|Ĥoc|s〉|2

Es − Eb
. (2.26)
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To simplify this expression, we note that Ĥ0 is nothing more than the contact potential
Eq. (2.24). Hence, we have that

〈s|Ĥo|s〉 = 4π~ωhoa2
hoas 〈s|δ(r̂ij)|s〉 . (2.27)

Because this expression is only being perturbed by a small amount, we assume that we can
write 〈s|Ĥint|s〉 similarly:

〈s|Ĥint|s〉 = 4π~ωhoa2
hoaeff 〈s|δ(r̂ij)|s〉 , (2.28)

where aeff is some effective scattering length due to the effect of the bound state |b〉. We can
substitute these expressions into Eq. (2.26), producing

aeff = as −
1

Eb − Es

(
|〈b|Ĥoc|s〉|2

4π~ωhoa2
ho 〈s|δ(r̂ij)|s〉

)
. (2.29)

So, as we described earlier, the effective scattering length of the scattering state is dependent
on the difference in the energy between the bound and scattering states.

One particularly easy way of altering this energy difference for an atomic gas is via an
external magnetic field. Because the atoms in the scattering and bound states have different
magnetic moments (µs and µb, respectively), they respond differently to an external magnetic
field such that generally Es(B) 6= Eb(B). However, suppose that there is a magnetic field
value B0 for which Eb = Es = E0. Then, we can linearize the energies around B0:

Eb(B) = E0 − µb(B −B0) (2.30a)
Es(B) = E0 − µs(B −B0). (2.30b)

Substituting these into Eq. (2.29), we find [67]

aeff(B) = as

(
1− ∆

B −B0

)
, (2.31)

where

∆ =
1

as(µs − µb)

(
|〈b|Ĥoc|s〉|2

4π~ωhoa2
ho 〈s|δ(r̂ij)|s〉

)
. (2.32)

Thus, we see that one can change the effective scattering length of the interaction by altering
the external magnetic field experienced by the system.

Substantial tunability of both the magnitude and sign of a has been demonstrated in the
laboratory using magnetic Feshbach resonances [68–70]. A particularly impressive example
is [36], in which a for 7Li was tuned between 0.53 pm and 10.6µm (corresponding to between
3.5× 10−7 aho and 7 aho, given the value of ωho referenced in the discussion of the external
potential in Section 2.2.1). Our calculations go up to 0.5 aho (about 420 nm), which is thus
well within the range of experimental accessibility.
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2.2.3 The Ground State

To recap, the Hamiltonian for the many-body, pairwise-interacting, double well system is
given by

Ĥ =
N∑
i=1

(
p2
i

2m
+ Vext(ri)

)
+

4π~2a

m

∑
i<j

δ(rjk), (2.33)

with the external potential given by (2.12). We can also express this in second quantized
form as

Ĥ =

∫
Ψ̂†(r)

(
− ~2

2m
∇2 + Vext(r)

)
Ψ̂(r) dr +

2π~2a

m

∫
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) dr, (2.34)

where the field operator Ψ̂(r) destroys a particle located at r. In either form, our next goal
is to compute the ground state of the system. This cannot be done analytically because of
the presence of the interaction potential. Our options are either to compute an approximate
analytical solution or to solve the exact problem as well as we can numerically. We will
discuss analytical approximations in the rest of this section and the next two chapters and
defer discussion of numerical solution methods until Chapter 5.

That said, there is one situation in which we do know the form of the many-body ground
state: this is the noninteracting (a = 0) case. In that situation, each atom is simply in the
single-body ground state of the Hamiltonian, which we will denote by φ0(r). Hence,

Ψgs(r1, . . . , rN) =
N∑
i=1

φ0(ri) (a = 0). (2.35)

The Gross-Pitaevskii Equation

The simplest analytical approximation that one can make is to assume that the N -body
ground state has the form of an N -term product of the same single-body wavefunction:

Ψmf (r1, . . . , rN) =
N∏
i=1

ψ(ri). (2.36)

In other words, one assumes that all of the atoms in the BEC are in the same state. In the
a→ 0 limit, this approximation, known as the mean-field approximation, holds exactly at
T = 0. One expects, then, that it is a reasonable approximation for small a.

Of course, we don’t yet know which state ψ(r) should be used in the mean-field approx-
imation. To determine this, we first compute an expression for the energy of an arbitrary
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state for the Hamiltonian (2.33):

E[ψ, ψ∗] =

∫
Ψ∗mf (r1, . . . , rN)ĤΨmf (r1, . . . , rN) dr1 · · · drN

=
N∑
i=1

∫
Ψ∗mf (r1, . . . , rN)

(
−~2∇2

i

2m
+ Vext(ri)

)
Ψmf (r1, . . . , rN) dr1 · · · drN

+
4π~2a

m

∑
i<j

∫
Ψ∗mf (r1, . . . , rN)δ(rjk)Ψmf (r1, . . . , rN) dr1 · · · drN

= N

∫
ψ∗(r1)

(
−~2∇2

1

2m
+ Vext(r1)

)
ψ(r1) dr1

+
4π~2a

m

N(N − 1)

2

∫
ψ∗(r1)|ψ(r1)|2ψ(r1) dr1

= N

∫
ψ∗(r1)

(
−~2∇2

1

2m
+ Vext(r1) +

4π~2a

m

N − 1

2
|ψ(r1)|2

)
ψ(r1) dr1. (2.37)

We have expressed this energy as a functional of the wavefunction ψ and its conjugate ψ∗.
The correct wavefunction for the condensate is the one that minimizes this energy subject to
the condition that ψ is normalized. We can accomplish this minimization by introducing a
Lagrange multiplier to form the new functional

Λ[ψ, ψ∗] = N

∫
ψ∗(r1)

(
−~2∇2

1

2m
+ Vext(r1) +

4π~2a

m

N − 1

2
|ψ(r1)|2

)
ψ(r1) dr1

−Nµ
(∫
|ψ(r1)|2dr1 − 1

)
, (2.38)

and setting equal to zero the derivative of that functional with respect to ψ∗:

δ

δψ∗(r)
Λ[ψ, ψ∗] = N

(
−~2∇2

2m
+ Vext(r) +

4π~2a

m
(N − 1)|ψ(r)|2 − µ

)
ψ(r)

= 0. (2.39)

This leads to the Gross-Pitaevskii (GP) equation [71, 72]:(
− ~2

2m
∇2 + Vext(r) +

4π~2

m
(N − 1)a|ψ(r)|2

)
ψ(r) = µψ(r), (2.40)

which takes the form of a nonlinear Scrödinger equation for ψ(r). The strength of the
nonlinearity is controlled by (N − 1)a (≈ Na for large N). For Na large and positive (i.e., a
dense and repulsive gas), the nonlinear term tends to spread the wavefunction out relative to
the solution to the linear Scrödinger equation by imposing an energy cost on locally high
particle densities, whereas for Na large and negative (i.e., a dense and attractive gas), the
opposite is true.
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The GP equation is generally a valid description of the condensate as long as the number
of atoms in the condensed state N0 is approximately equal to N . However, we will discuss
in more detail in Section 3.1, the Gross-Pitaevskii ground state is not capable of describing
squeezing or fragmentation in a meaningful way; no matter the value of the scattering length
a, the GP ground state exhibits no squeezing and no fragmentation. Hence, we must go
beyond the simple mean-field approximation to have a chance at describing all of the physics
that we see in our BEC simulations.

Multimode Expansion

The other analytical method we will consider begins with the second-quantized form of the
interacting double well Hamiltonian, Eq. (2.34). The field operator Ψ̂(r) in this expression
can be written in terms of a complete basis of single-body states φi(r), which we will refer to
as modes :

Ψ̂(r) =
∞∑
i=1

φi(r)âi. (2.41)

The operator âi destroys a particle in the mode φi(r) (while â†i creates a particle in that
mode), so intuitively one can interpret this sum as encompassing all of the different ways of
destroying a particle at r, which is what Ψ̂(r) does. The creation and annihilation operators
for each mode obey the usual commutation relation [â, â†] = 1.

In principle, the modes can be any complete set of single-body states. In practice, one
usually chooses to use the energy eigenstates of the external potential, or convenient linear
combinations of those eigenstates. As we shall see in Chapters 3 and 4, we use linear
combinations of the energy eigenstates of the double well that are localized in the left and
right sides of the potential.

Upon substituting Eq. (2.41) into Eq. (2.34), we find

Ĥ =
∞∑

i,j=1

â†i âj εij + a

∞∑
i,j,k,l=1

â†i â
†
j âkâl κijkl, (2.42)

where

εij =

∫
φ∗i (r)

(
− ~2

2m
∇2 + Vext(r)

)
φj(r) dr (2.43)

κijkl =
2π~2

m

∫
φ∗i (r)φ∗j(r)φk(r)φl(r) dr. (2.44)

The Hamiltonian now has the form of a generalized Bose-Hubbard Hamiltonian [73] (the
traditional Bose-Hubbard Hamiltonian has i = j = k = l in the second term). We can
interpret the parameters in the Hamiltonian as follows. The (single-particle) energy of a mode
φi(r) is given by εii, while for i 6= j, the εij parameters characterize the coupling between
modes φi(r) and φj(r) that is independent of the two-body interactions. The κijkl parameters



CHAPTER 2. BACKGROUND: BEC, SQUEEZING, AND FRAGMENTATION 18

characterize the strength of two-body interactions, which involve coupling among up to four
different modes. Note that the value of these parameters are solely a function of the choice
of modes φi(r).

In order to make computation of the ground state of the Hamiltonian (2.42) tractable,
one can truncate the expansion of the field operator (2.41) by restricting it to only a finite
number of modes. This makes the Hilbert space of the system finite, and, if the truncation is
sufficiently severe, allows one to numerically diagonalize the Hamiltonian to find the ground
state. For the double well system, the usual truncation is a two-mode model in which the field
operator is expanded in terms of the two lowest single-particle energy states of the double well
potential. Recently, an eight-mode model [50], which truncates the mode basis to the eight
single-particle states of lowest energy, has also been considered. We discuss the computation
and results of using the two- and eight-mode models in Chapters 3 and 4, respectively.

Before moving on to a discussion of squeezing, there are two more issues related to the
multimode expansion worth discussing: the significance of the one-mode expansion and the
construction of basis states that span the Hilbert space of the Hamiltonian.

One-Mode Expansion In the case of a one-mode expansion, the field operator can be
expanded as Ψ̂(r) = φ(r)â. This leads to a Hamiltonian of the form

Ĥ = ε n̂+ aκ n̂(n̂− 1), (2.45)

where n̂ = â†â is the number operator associated with the given mode, and we have used
the commutation relation [â, â†] = 1 to simplify the second term. Because there is only one
mode in this expansion, the ground state (indeed, the only possible state) consists of all of
the particles in that mode:

Ψgs(r1, . . . , rN) =
N∏
i=1

φ(ri). (2.46)

This is simply the ground state in the mean-field approximation (see Eq. (2.36)), and if we
compute the energy of the one-mode Hamiltonian for this state, we get

E = 〈Ψgs|Ĥ|Ψgs〉
= Nε+ aN(N − 1)κ

= N

∫
φ∗(r)

(
−~2∇2

2m
+ Vext(r) +

4π~2a

m

N − 1

2
|φ(r)|2

)
φ(r) dr, (2.47)

which is the same energy functional that we used to derive the GP equation. Hence, the one-
mode approximation in the multimode expansion is the same as the mean-field approximation
that leads to the GP equation, so adding more modes will give us a better approximation to
the actual behavior of the system than does the mean-field approximation.



CHAPTER 2. BACKGROUND: BEC, SQUEEZING, AND FRAGMENTATION 19

Basis States It is useful to think through how to represent an arbitrary N -body state
given the set of modes φi(r). First, choose a set of N modes, with repetitions allowed, for
the N atoms to be in, and denote the set of indices of these modes as I = {i1, . . . , iN}.
Because these atoms are indistinguishable bosons, they must be in a completely symmetrized,
normalized state. This state, known as a Fock state, is a sum over all of the different ways of
assigning the N atoms to the chosen N modes:

ψI(r1, . . . , rN) = AI
∑

J∈P (I)

φj1(r1) . . . φjN (rN), (2.48)

where

AI =

√
m(I, 1)!m(I, 2)! . . .

N !
, (2.49)

is the normalization constant. Here, m(I, n) denotes the number of times n appears in the set
I (i.e., the multiplicity of n in I) and P (I) denotes the set of distinguishable permutations of
the elements of I.

The Fock states ψI(r1, . . . , rN) form a basis for the system’s N -body Hilbert space, so it
is possible to construct an arbitrary N -body state Ψ(r1, . . . , rN) as a sum over these states:

Ψ(r1, . . . , rN) =
∑
I∈S

cIψI(r1, . . . , rN), (2.50)

where S is the set of all of the possible ways of choosing N mode indices and cI assures
normalization (i.e.,

∑
|cI |2 = 1).

We can also compute the size of the Hilbert space spanned by the states ψI(r1, . . . , rN)
simply by counting how many of them there are, i.e., by counting the number of ways there
are to distribute N atoms among M modes. (which is equivalent to determining how many
ways there are of arranging N identical objects and M − 1 identical partitions in a line). The
answer is:

dim(Ĥ) =
(N +M − 1)!

N !(M − 1)!
. (2.51)

In the limit of large M , this expression approaches MN . Hence, if we would like to be able
to numerically diagonalize the Hamiltonian, we need to restrict ourselves to a relatively small
number of modes (or atoms) to make that computation tractable.

2.3 Number Squeezing
Number squeezing is a phenomenon that is related to the probability of finding different
numbers of particle on one side or the other of a barrier; in the case of our system, the
particles are atoms and the barrier is the one in the middle of the double well. Imagine that
we measure the positions of all N atoms; we will find some number of them in each half of
the potential, with the probability of finding that particular partitioning of atoms determined
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by the many-body wavefunction of the system. In an unsqueezed system, the distribution of
partitioning is relatively broad and given by a binomial distribution, whereas the system is
said to be squeezed when the probability of observing a half-and-half partitioning between
the wells dominates over all other partitionings. In other words, fluctuations that lead to a
large difference in the number of particles on the two sides of the potential are suppressed in
squeezed systems.

The amount of squeezing a system exhibits depends on the strength of the interactions
between the particles, because interactions can enhance or suppress number fluctuations.
Naively, we expect that a system with stronger repulsive interaction will have smaller number
fluctuations, and hence more squeezing, due to the energy cost of packing many strongly
repulsive particles on the same side of the double well. Thus, squeezing should increase
monotonically with (repulsive) interaction strength. This is indeed the prediction of the
two-mode model when the two wells are well-separated [43]. However, as we shall see in
Chapters 3, 4, and 6, this simple picture is not the whole story: squeezing is not monotonically
related to interaction strength in all situations.

2.3.1 The Differential Number Distribution

To quantify the concept of squeezing, we will need the help of some new operators to define the
differential number distribution, the distribution that encodes the partitioning probabilities
described above. First, we define an operator L̂, which measures the number of particles on
the left side of the double well (i.e., for z < 0). For an N atom system, it is given in the
position representation by

L̂ =
N∑
i=1

{
1 zi < 0
0 zi > 0

. (2.52)

We can then define NL = 〈ψ|L̂|ψ〉 as the average number of atoms in the left well for a given
state |ψ〉. For a single-body wavefunction of the form ψ(r) = ψ(x)ψ(y)ψ(z), this definition
gives

NL =

∫ ∞
−∞

∫ ∞
−∞

∫ 0

−∞
|ψ(x)ψ(y)ψ(z)|2 dxdydz

=

∫ 0

−∞
|ψ(z)|2 dz, (2.53)

which is reasonable: a wavefunction localized completely on the left (right) gives NL = 1
(0), and one that spans z = 0 gives NL between 1 and 0 depending on how much of the
wavefunction is on each side. because L̂ depends only on z, the x and y parts of the
expectation value integrate to 1 (assuming proper normalization), so we can effectively ignore
them. Also, if this wavefunction were the single-body ground state of the double well, then it
would be even about z = 0 and we would have NL = 1/2.
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For the many-body case, let’s first integrate the wavefunction Ψ(r1, . . . , rN) over all of
the x and y coordinates, since we are only interested in knowing how the particles are
distributed along the a axis. This produces a density ρz(z1, . . . , zN) which depends only on
the z coordinates:

ρz(z1, . . . , zN) =

∫ ∞
−∞
· · ·
∫ ∞
−∞
|Ψ(r1, . . . , rN)|2 dx1 . . . dxNdy1 . . . dyN (2.54)

Then, we compute NL for this state:

NL =

∫ 0

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

ρz(z1, . . . , zN) dz1 . . . dzN

+

∫ ∞
−∞

∫ 0

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

ρz(z1, . . . , zN) dz1 . . . dzN

+ · · ·+
∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ 0

−∞
ρz(z1, . . . , zN) dz1 . . . dzN

= N

∫ 0

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

ρz(z1, . . . , zN) dz1 . . . dzN

= N

∫ 0

−∞
ρ1(z) dz. (2.55)

where we have taken advantage of the bosonic symmetry of the wavefunction to go from the
first to the second line, and we defined the one-body density

ρ1(z) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

ρz(z1, . . . , zN) dz2 . . . dzN , (2.56)

which is a function that correctly reproduces the probability of finding an atom at a given
position z at the expense of integrating out any information about two- or more-body
correlations. For a wavefunction in the ground state, ρ1(z) would be even about z = 0 and,
as in the single-body case, we would have NL = N/2.

In analogy to L̂, we can also write an expression for R̂:

R̂ =
N∑
i=1

{
0 zi < 0
1 zi > 0

. (2.57)

The differential number distribution is related to the operator n̂ = 1
2
(L̂− R̂), which is given

by

n̂ =
1

2

N∑
i=1

{
1 zi < 0
−1 zi > 0

. (2.58)

The distribution is simply the probability of measuring the system to have a particular value
of n, given the particular state the system is in. As noted above, the ground state of the
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Figure 2.3: Sketch of the probability distribution function P (n) related to the differential
number operator n̂ for positive (blue), negative (green), and zero (red) scattering length a.
For a = 0, the PDF is the one given in Eq. (2.62). For a > 0, the interaction between the
atoms is repulsive and the distribution is squeezed. For a < 0, the interaction is attractive
and the distribution is approaching a Schrödinger cat state.

system has 〈L̂〉 = 〈R̂〉 = N/2, and hence 〈n̂〉 = 0 in this state. Because of the symmetry of
the double well, the probability of measuring a particular value n = (NL −NR)/2 is equal to
the probability of measuring −n. This implies that the differential number distribution is
symmetric about n = 0, which is true independent of the strength of the interactions between
the atoms. However, the width of the distribution does depend on the interaction strength.
As we argued above, we expect that the number distribution will narrow (squeeze) for a
repulsive interaction (a > 0) because configurations with many particles on one side of the
double well and few on the other will be energetically disfavored relative to configurations
that more evenly split the particles between the two sides (the opposite is true for attractive
interactions). See Figure 2.3 for a sketch of the differential number distribution for different
values of a.

Because we know that the many-body, noninteracting ground state is given by Eq. (2.35),
we can compute the probability density for measuring a particular value of n. To do so, we
have to write Eq. (2.35) in terms of eigenstates of n̂. For a state φ(r) that is even about
z = 0 (like φ0(r)), we can construct two normalized states that are eigenstates of n̂:

φl(r) =
√

2

{
φ(r) zi < 0
0 zi > 0

(2.59)

φr(r) =
√

2

{
0 zi < 0
φ(r) zi > 0

, (2.60)

with eigenvalues n = 1/2 and −1/2, respectively. Because φ(r) = (φl(r) + φr(r))/
√

2, we can
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write Eq. (2.35) as

Ψgs(r1, . . . , rN) =
1

2N/2

N∑
i=1

(φl0(ri) + φr0(ri)) (a = 0). (2.61)

The number of terms in the sum with a given value of n is given by
(

N
N/2−n

)
, and each term

has a probability 2−N . Hence, the probability distribution function associated with n̂ in the
noninteracting ground state is

P (n) =
1

2N
N !

(N
2
− n)!(N

2
+ n)!

− N

2
≤ n ≤ N

2
, (2.62)

which may be recognized as a binomial distribution centered at n = 0.

2.3.2 The Squeezing Parameter

The width of the differential number distribution for a state |ψ〉 can be characterized by its
standard deviation σ2

n = 〈ψ|n̂2|ψ〉 − 〈ψ|n̂|ψ〉2. We would like to define a squeezing parameter
that measures the amount of squeezing in the system relative to the noninteracting (a = 0)
case, in which the many-body ground state consists of a product of single-particle ground
states. To do so, we need to know what σn is when a = 0.

We have already argued that 〈ψ|n̂|ψ〉 = 0 in the ground state of the double well regardless
of the value of a; this is because the ground state is even about z = 0, and therefore |L̂〉 = |R̂〉.
Before computing 〈ψ|n̂2|ψ〉, we will define some additional notation for convenience:

θ̂i =
1

2

{
1 zi < 0
−1 zi > 0

, (2.63)

so that n̂ =
∑N

i=1 θ̂i. Then, we have

n̂2 =
N∑
i=1

θ̂i

N∑
j=1

θ̂j

=
N∑
i=1

θ̂2
i + 2

N∑
i<j=1

θ̂iθ̂j

=
N

4
+ 2

N∑
i<j=1

θ̂iθ̂j. (2.64)

Also, we define

Nij =

∫ ∞
−∞

φ∗i (r) θ̂ φj(r) dr. (2.65)
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In the case of single-particle, noninteracting energy eigenstates of the three-dimensional
double well, the wavefunction is separable into a product of the ground states of the two-
dimensional harmonic oscillator and the one-dimensional double well. The 1D double well
energy eigenstates are either an even or odd function of z, so we have∫ ∞

−∞
φ∗(z) θ̂ φ(z) dz =

1

2

(∫ 0

−∞
|φ(z)|2 dz −

∫ ∞
0

|φ(z)|2 dz
)

=
1

2

(∫ 0

−∞
|φ(z)|2 dz −

∫ 0

−∞
|φ(z)|2 dz

)
= 0. (2.66)

Therefore, Nii = 0 for all single-particle energy eigenstates of the system.
If we denote the single-body ground state of the double well by φ0(r), then we have

〈ψg|n̂2|ψg〉 =
N

4
+ 2

N∑
i<j=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ∗0(r1) · · ·φ∗0(rN) θ̂iθ̂j φ0(r1) · · ·φ0(rN) dr1 · · · drN

=
N

4
+ 2

N(N − 1)

2
N 2

00

=
N

4
. (2.67)

Hence, we see that σn =
√
N/2 in the noninteracting ground state.

We define the squeezing parameter S to be

S = 1− σ2
n

N/4
. (2.68)

With this definition, S = 0 in the noninteracting case, which corresponds to no squeezing. In
the fully squeezed state, σn = 0 (the number distribution is as narrow as possible) and S = 1.
Any value in between these two indicates an intermediate amount of squeezing.

2.3.3 Computing the Squeezing Parameter for Arbitrary States

In our study of the two- and eight-mode models, we will need to be able to compute the
squeezing parameter, which depends on σn, for the predicted ground state. In general, the
ground state Ψ will be of the form of Eq. (2.50). The width σn is a function of 〈ψI |n̂|ψJ〉
and 〈ψI |n̂2|ψJ〉 for all of the possible I and J :

σ2
n = 〈Ψ|n̂2|Ψ〉 − 〈Ψ|n̂|Ψ〉2

=
∑
I,J∈S

c∗IcJ 〈ψI |n̂2|ψJ〉 −

(∑
I,J∈S

c∗IcJ 〈ψI |n̂|ψJ〉

)2

. (2.69)

We will spend the rest of this section computing general expressions for 〈ψI |n̂|ψJ〉 and
〈ψI |n̂2|ψJ〉.
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Expectation value of n̂ Using the definition of the N -body basis state (2.48), we can
begin to compute 〈ψI |n̂|ψJ〉:

〈ψI |n̂|ψJ〉 = AIAJ
∑

K∈P (I)
L∈P (J)

N∑
n=1

∫ ∞
−∞

ψ∗k1(r1) . . . ψ∗kN (rN) θ̂n ψl1(r1) . . . ψlN (rN) dr1 . . . drN

= AIAJ N
∑

K∈P (I)
L∈P (J)

Nk1l1
N∏
n=2

δknln . (2.70)

To go from the first to the second line, we take advantage of Bose symmetry to replace a
sum of N identical terms with N times one of them. The structure of this expressions puts
significant constraints on the allowable sets of states I and J . Because δij = 0 for i 6= j, the
two sets of states must differ from each other by at most one index; otherwise, 〈ψI |n̂|ψI〉 = 0.
Let’s look at the two nontrivial cases one at a time.

All indices identical For this case we have ψI = ψJ (i.e., m(I, n) = m(J, n) for all n).
Starting from Eq. (2.70), we have

〈ψI |n̂|ψJ〉 = A2
I N

∑
K∈P (I)
L∈P (I)

Nk1l1
N∏
n=2

δknln

= A2
I N

∞∑
k=1

Nkk
(N − 1)!

m(I, 1)! . . . (m(I, k)− 1)! . . .

=
∞∑
k=1

m(I, k)Nkk, (2.71)

where we went from the first line to the second by replacing the original sum by one in which
we assigned each mode in turn to Nii and used the number of ways of arranging the indices in
I (excluding the one reserved for Nii) as the multiplicity of each term. As noted previously,
for single-particle energy eigenstates Nii = 0, so this expression agrees with the fact that
〈n̂〉 = 0 for such a state.

One index different The other nontrivial case is the one in which there is one difference
between the set of states in I and J . Suppose I has an extra copy of a state (let’s say state p)
and a missing copy of a state (let’s say state q) compared with J (i.e., m(I, p) = m(J, p) + 1,
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m(I, q) = m(J, q)− 1, and m(I, n) = m(J, n) for all n 6= p or q). Then,(
AJ
AI

)2

=
m(J, 1)!m(J, 2)! · · ·
m(I, 1)!m(I, 2)! · · ·

=
(m(I, p)− 1)!(m(I, q) + 1)!

m(I, p)!m(I, q)!

=
m(I, q) + 1

m(I, p)
. (2.72)

Proceeding from Eq. (2.70) produces

〈ψI |n̂|ψJ〉 = A2
I

√
m(I, q) + 1

m(I, p)
N

∑
K∈P (I)
L∈P (J)

Npq
N∏
n=2

δknln

= A2
I

√
m(I, q) + 1

m(I, p)
NNpq

(N − 1)!

m(I, 1)! . . . (m(I, p)− 1)! . . .

= A2
I

√
m(I, q) + 1

m(I, p)
m(I, p)Npq

N !

m(I, 1)!m(I, 2)! . . .

=
√
m(I, p)(m(I, q) + 1)Npq, (2.73)

where we went from the first line to the second by counting the number of terms in the sum,
which is simply the number of ways of arranging the indices in I excluding one copy of p.

Expectation value of n̂2 Again, using the definition of the N -body basis state (2.48), we
can begin to compute 〈ψI |n̂2|ψJ〉:

〈ψI |n̂2|ψJ〉 = AIAJ
∑

K∈P (I)
L∈P (J)

∫ ∞
−∞

ψ∗k1(r1) . . . ψ∗kN (rN)

(
N

4
+ 2

N∑
n<m=1

θ̂nθ̂m

)

× ψl1(r1) . . . ψlN (rN) dr1 . . . drN

= AIAJ
∑

K∈P (I)
L∈P (J)

(
N

4

N∏
n=1

δknln +N(N − 1)Nk1l1Nk2l2
N∏
n=3

δknln

)
, (2.74)

where, again, we used Bose symmetry to evaluate the sum over n and m. As with 〈ψI |n̂|ψJ〉,
there are constraints on the possible sets of states I and J due to the Kronecker deltas: the
first term in parentheses must have I = J , while the second term must have I and J differ
by at most two indices. We evaluate each case individually.
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All indices identical For this case we have ψI = ψJ (i.e., m(I, n) = m(J, n) for all n).
Starting from Eq. (2.74), we can simplify the sums again by counting terms:

〈ψI |n̂2|ψJ〉 = A2
I

∑
K∈P (I)
L∈P (I)

(
N

4

N∏
n=1

δknln +N(N − 1)Nk1l1Nk2l2
N∏
n=3

δknln

)

= A2
I

(
N

4

N !

m(I, 1)! · · ·
+N(N − 1)

(
∞∑
k=1

N 2
kk

(N − 2)!

m(I, 1)! · · · (m(I, k)− 2)! · · ·

+
∞∑

k<l=1

(NklNlk +NlkNkl +NkkNll +NllNkk)

× (N − 2)!

m(I, 1)! · · · (m(I, k)− 1)! · · · (m(I, l)− 1)! · · ·

))
=
N

4
+
∞∑
k=1

m(I, k)(m(I, k)− 1)N 2
kk + 2

∞∑
k<l=1

m(I, k)m(I, l)(N 2
kl +NkkNll).

(2.75)

In the noninteracting ground state, all atoms are in the same mode for which Nii = 0, so this
reduces to N/4, as we concluded previously.

One index different As before, we assume that I has an extra copy of state p and a
missing copy of state q compared with J (i.e., m(I, p) = m(J, p) + 1, m(I, q) = m(J, q)− 1,
and m(I, n) = m(J, n) for all n 6= p or q), so that result (2.72) still holds. The first term in
Eq. (2.74) goes to zero, and the rest becomes

〈ψI |n̂2|ψJ〉 = A2
I

√
m(I, q) + 1

m(I, p)
N(N − 1)

(
(NpqNpp +NppNpq)

(N − 2)!

m(I, 1)! . . . (m(I, p)− 2)! . . .

+(NpqNqq +NqqNpq)
(N − 2)!

m(I, 1)! . . . (m(I, p)− 1)! . . . (m(I, q)− 1)! . . .

+
∞∑
k=1
k 6=p,q

(NpqNkk +NkkNpq +NpkNkq +NkqNpk)

× (N − 2)!

m(I, 1)! . . . (m(I, k)− 1)! . . . (m(I, p)− 1)! . . .

)
. (2.76)
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We can continue to simplify:

〈ψI |n̂2|ψJ〉 = 2

√
m(I, q) + 1

m(I, p)

(
m(I, p)(m(I, p)− 1)NpqNpp +m(I, p)m(I, q)NpqNqq

+
∞∑
k=1
k 6=p,q

m(I, p)m(I, k)NpkNkq

)

= 2
√
m(I, p)(m(I, q) + 1)

(
∞∑
k=1

m(I, k)(NpqNkk +NpkNkq)

−Npq((m(I, p) + 1)Npp +m(I, q)Nqq)

)
. (2.77)

Two indices different There are four distinct ways for two indices to be different
between the sets I and J , each of which results in a slightly different form for 〈ψI |n̂2|ψJ〉.
Because the computations proceed similarly to what we’ve seen above, we will skip the
derivations and go right to the results:

1. If I has 2 extra copies of p and two missing copies of q compared to J (i.e., m(I, p) =
m(J, p) + 2, m(I, q) = m(J, q)− 2, and m(I, n) = m(J, n) for all n 6= p or q), we find

〈ψI |n̂2|ψJ〉 =
√

(m(I, q) + 2)(m(I, q) + 1)m(I, p)(m(I, p)− 1)N 2
pq. (2.78)

2. If I has 2 extra copies of p, a missing copy of q, and a missing copy of s compared
to J (i.e., m(I, p) = m(J, p) + 2, m(I, q) = m(J, q) − 1, m(I, s) = m(J, s) − 1, and
m(I, n) = m(J, n) for all n 6= p, q, or s), we find

〈ψI |n̂2|ψJ〉 = 2
√

(m(I, q) + 1)(m(I, s) + 1)m(I, p)(m(I, p)− 1)NpqNps. (2.79)

3. If I has one extra copy p, one extra copy of r, and two missing copies of q compared
to J (i.e., m(I, p) = m(J, p) + 1, m(I, r) = m(J, r) + 1, m(I, q) = m(J, q) − 2, and
m(I, n) = m(J, n) for all n 6= p, q, or r), we find

〈ψI |n̂2|ψJ〉 = 2
√

(m(I, q) + 2)(m(I, q) + 1)m(I, p)m(I, r)NpqNrq. (2.80)

4. If I has one extra copy p, one extra copy of r, a missing copy of q, and a missing copy of
s compared to J (i.e., m(I, p) = m(J, p)+1, m(I, r) = m(J, r)+1, m(I, q) = m(J, q)−1,
m(I, s) = m(J, s)− 1, and m(I, n) = m(J, n) for all n 6= p, q, r, or s), we find

〈ψI |n̂2|ψJ〉 = 2
√

(m(I, q) + 1)(m(I, s) + 1)m(I, p)m(I, r) (NpqNrs +NpsNrq). (2.81)

To summarize, we can use all of the expressions for 〈ψI |n̂|ψJ〉 and 〈ψI |n̂2|ψJ〉 derived in
this section to exactly evaluate the squeezing parameter for any state of the form Eq. (2.50).
We will apply this computational machinery when computing the squeezing parameter in the
two- and eight-mode models in the coming chapters.
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2.4 Fragmentation and Depletion
As we have stated previously, Bose-Einstein condensation is characterized by the ground
state of a many-body system exhibiting macroscopic occupation of one single-body state.
However, we have thus far avoided giving a technical definition of condensation for a system
with interacting constituents. In particular, which single-particle state is occupied when there
are interactions? We will address this question in this section, and in the process introduce
fragmentation, which is the phenomenon in which a system exhibits macroscopic occupation
of more than one single-body state. Fragmentation is particularly relevant for systems that
contain symmetry, like the spatial symmetry in the double well. We will also introduce
depletion, in which an (often small) fraction of the atoms in the system distribute themselves
among all of the single-body states that are not macroscopically occupied. The distinction
between these two phenomena is often a subtle one in practice.

2.4.1 The One-Body Density Matrix

As we have seen, Bose-Einstein condensation in a non-interacting system is defined by the
macroscopic occupation of the system’s single-body ground state wavefunction. In other
words, the condensate fraction, which is the ratio of the number of particles occupying the
ground state to the total number of particles, becomes of order 1. When interactions are
introduced, the single-body energy eigenstates of the system are no longer relevant to the
construction of the many-body state, so this simple definition of condensation no longer
applies. For a uniform system, momentum is a good quantum number regardless of the
presence of interactions, and so the condensate may always be associated with the macroscopic
occupation of the zero momentum state [74].

In a finite, non-uniform, interacting system like ours, neither of these prescriptions apply.
However, a general criterion for identifying condensation that does apply in such systems
was proposed by Penrose and elaborated on during the 1950’s based on an analysis of the
one-body reduced density matrix (OBDM or 1-RDM) of the system [75–80]. The OBDM for
a pure many-body quantum state Ψ(r1, . . . , rN), defined in terms of the field operator Ψ̂(r)
and its adjoint, is given by

ρ(r, r′) = 〈Ψ|Ψ̂†(r)Ψ̂(r′)|Ψ〉 . (2.82)

Intuitively, the OBDM characterizes the correlations between the particle density at points r
and r′ by measuring the probability of destroying a particle at r′ and recreating it at r.

We can write the OBDM in terms an integral over position-space wavefunctions. To do
so, we define a 3N -dimensional vector R = {r1, . . . , rN} that encodes the coordinates of all
of the atoms in the system, and we associate with it a position ket |R〉 such that

〈R|S〉 =
N∏
i=1

δ(ri − si). (2.83)
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Then, we can write the Ψ̂†(r)Ψ̂(r′) operator in the position basis:

〈R|Ψ̂†(r)Ψ̂(r′)|S〉 =
N∑
i=1

δ(r− ri)δ(r
′ − si)

N∏
j=1
j 6=i

δ(rj − sj). (2.84)

The result is a sum over the N different ways of removing a particle at r′ and replacing it at
r while leaving the other N − 1 particles alone.

With this definition, we find

ρ(r, r′) = 〈Ψ|Ψ̂†(r)Ψ̂(r′)|Ψ〉

=

∫ ∞
−∞
· · ·
∫ ∞
−∞
〈Ψ|R〉 〈R|Ψ̂†(r)Ψ̂(r′)|S〉 〈S|Ψ〉 dRdS

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

Ψ∗(r1, . . . , rN)
N∑
i=1

δ(r− ri)δ(r
′ − si)

N∏
j=1
j 6=i

δ(rj − sj)Ψ(s1, . . . , sN) dR dS

= N

∫ ∞
−∞
· · ·
∫ ∞
−∞

Ψ∗(r1, . . . , rN)δ(r− r1)δ(r′ − s1)
N∏
j=2

δ(rj − sj)Ψ(s1, . . . , sN) dR dS

= N

∫ ∞
−∞
· · ·
∫ ∞
−∞

Ψ∗(r, r2 . . . , rN)Ψ(r′, r2 . . . , rN) dr2 . . . drN (2.85)

Notice that when r = r′, the OBDM reproduces the particle density, so that∫ ∞
−∞

ρ(r, r) dr = N. (2.86)

Because the OBDM is Hermitian and positive definite, it is possible to diagonalize it in
terms of a set of eigenfunctions χi(r) and (real, positive) eigenvalues Ni that satisfy∫ ∞

−∞
ρ(r, r′)χi(r

′) = Niχi(r), (2.87)

so that

ρ(r, r′) =
∞∑
i=1

Niχ
∗
i (r)χi(r

′). (2.88)

In this context, the eigenfunctions are known as natural orbitals and the eigenvalues as
occupation numbers. As a matter of notation, the natural orbital with highest occupation is
given an index of 0, the next highest an index of 1, and so on, and we denote the fraction of
particles occupying a given natural orbital by ni = Ni/N . Condensation is related to the
OBDM because a natural orbital that is occupied in the thermodynamic limit (i.e., that
has nonzero ni as N approaches infinity) is interpreted as a condensate. This definition also
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allows for analysis of condensation in finite systems (N <∞); if one diagonalizes an OBDM
and finds an eigenvalue of order N , then condensation is present in the system.

What is the meaning of the natural orbitals? Suppose that we expand the field operator
in a basis of the natural orbitals (which we can do because, as eigenfunctions of a Hermitian
operator, the natural orbitals form a good basis):

Ψ̂(r) =
∞∑
i=1

χi(r)ĉi. (2.89)

Then the OBDM can be written as

ρ(r, r′) = 〈Ψ|Ψ̂†(r)Ψ̂(r′)|Ψ〉

=
∞∑

i,j=1

〈Ψ|ĉ†i ĉj|Ψ〉χ∗i (r)χj(r
′). (2.90)

Because this must have the form of Eq. (2.88), the state |Ψ〉 must have a form such that

〈Ψ|ĉ†i ĉj|Ψ〉 = Niδij. (2.91)

Now, suppose |Ψ〉 is expressed in the generic form of Eq. (2.50) but with the modes also
chosen to be the natural orbitals. Then one possible state |Ψ〉 that satisfies (2.91) (assuming
the Ni are integers) is the state which is a symmetrized product of Ni bosons in each of the
single-body states χi(r). In that sense, one can think of the natural orbitals as the equivalent
single-body states that are being occupied by the bosons in the system.

However, there are in principle many other states that satisfy condition (2.91), which
consist of linear combinations with various numbers of particles in the various natural orbitals.
This ambiguity arises because the OBDM contains no information about the two- or more-
body correlations between the atoms in the system; all of that information is integrated out.
Therefore, there is no way in general to reconstruct the exact many-body wavefunction of the
system with only the OBDM as input (which would be equivalent to inverting the integration
in Eq. (2.85)), although it can be done in with some assumptions in certain regimes with a
system of electrons [81, 82]. Therefore, the interpretation of the natural orbitals described
above is useful for gaining intuition about the behavior of the system, but cannot be taken
as the true nature of the many-body state.

Depletion

As we stated, condensation is related to the OBDM because its signature is an occupation
number Ni of order N ; when we encounter such a situation, we interpret the system as having
Ni atoms in the condensate. The remaining small population distributed among the other
natural orbitals is known as the depletion [83]. It is possible to compute the depletion for
a homogeneous Bose gas (i.e., one not trapped in an external potential) by following the
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method of Bogoliubov [83]. One starts with the Hamiltonian (2.34) and approximates the
field operator by assuming that it exhibits small fluctuations about a dominant condensate
wavefunction:

ψ̂(r) = ψ(r) + δψ̂(r). (2.92)

After some work, one finds that

n0 = 1− 8

3

√
na3

π
+ · · · , (2.93)

where n0 is the occupation of the zero momentum single-body state and n is the atom density.
We interpret the quantity 1− n0, the occupation of all of the states besides the one with zero
momentum, as the depletion. The depletion is negligible in the dilute limit, na3 � 1.

To get a sense of this condition in physical terms, recall that the typical spacing between
atoms in a BEC is n−1/3 ≈ 4000 aB. Writing this in terms of the aho from [26], one finds that
n−1/3 ≈ 0.25 aho, and therefore the dilute limit is given by a � 0.25 aho. Our calculations
go up to a scattering length of a = 0.5 aho where the diluteness condition is violated and
depletion should be present.

2.4.2 Fragmented Condensates in the Double Well

In a typical BEC, only one natural orbital has significant occupation (i.e., only one ni is of
order N). However, it is possible to have a situation in which more than one natural orbital
has significant occupation; in that situation, we say that we have a fragmented condensate [53].
We note that fragmentation and depletion can be distinguished in the thermodynamic limit
because the occupation of individual depleted orbitals goes to zero as N goes to infinity, but
the fragmented states maintain a finite occupation in that limit.

In general, fragmentation occurs in systems with symmetries that lead to degeneracies in
the ground state [46]. In practice, such degeneracies alone are typically not enough to induce
fragmentation because exact degeneracies are very sensitive to small perturbations. However,
if the particles in the system have interactions that dominate over the energy splittings
generated by perturbations, then fragmentation can be achieved [46]. We will now discuss
some simple examples of these ideas in the case of the double well.

To start, let’s take our atoms to be noninteracting for simplicity, and let’s put them in
a double well with L = 0 (according to Eq. (2.12), this is not actually a double well at all,
but a pure quartic potential). The ground state is a product of N copies of the single-body
ground state φ0(r) and is not degenerate. The OBDM is

ρL=0(r, r′) = N

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ∗0(r)φ0(r′)
N∏
i=2

|φ0(ri)|2 dr2 . . . drN

= Nφ0(r)φ0(r′), (2.94)

which has only one nonzero Ni and is thus clearly not fragmented.
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Now, let’s put our noninteracting atoms into a double well with L→∞, in other words,
one with a very high barrier and with very large separation between the well minima. In that
limit, we can think of the two wells as being isolated from each other. Therefore, there are
two degenerate ground states: the ground state of the left well in isolation, and the ground
state of the right well in isolation. Let’s denote these by φL(r) and φR(r). Suppose further
that there are NL atoms in the left well and NR atoms in the right well; because the wells
are isolated, these quantities cannot change. Hence, the ground state of the whole system is
a Fock state (2.48) with NL atoms in the φL(r) mode and NR atoms in the φR(r) mode. The
OBDM for this state is given by

ρL→∞(r, r′) = N
NL!NR!

N !

∫ ∞
−∞
· · ·
∫ ∞
−∞

∑
J∈P (I)
K∈P (I)

φ∗j1(r) . . . φ∗jN (rN)φk1(r
′) . . . φkN (rN) dr2 . . . drN

=
NL!NR!

(N − 1)!

∑
J∈P (I)
K∈P (I)

φ∗j1(r)φk1(r
′)

N∏
n=2

δjnkn

=
NL!NR!

(N − 1)!

(
φ∗L(r)φL(r′)

(N − 1)!

(NL − 1)!NR!
+ φ∗R(r)φR(r′)

(N − 1)!

NL!(NR − 1)!

)
= NLφ

∗
L(r)φL(r′) +NRφ

∗
R(r)φR(r′). (2.95)

This state has two eigenvalues of order N , so this represents a fragmented state. Evidently,
the more isolated the wells of the double well (and hence the more degenerate the ground
state), the more fragmented the BEC becomes.

In the case of repulsively interacting atoms, we can further make an intuitive argument
that fragmentation should increase with interaction strength (similar to the argument we
made relating squeezing and interaction strength). The crux of the argument is that strong
repulsive interactions decrease number fluctuations, which localizes a fixed number of atoms on
each side of the well. Hence, the ground state will look increasingly like the isolated-well Fock
state, which is fragmented, the stronger the repulsive interactions. This result is discussed in
detail for the two-mode model in Reference [45], and we will return to it in Chapter 3.

Finally, we would like to illustrate the distinction between a fragmented and a non-
fragmented double well OBDM graphically. First of all, let’s integrate out the x and y parts
of the OBDM, to produce ρz(z, z′):

ρz(z, z
′) =

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z;x, y, z′) dx dy. (2.96)

Because of reflection symmetry about z = 0, the z-OBDM satisfies ρz(z, z′) = ρz(−z,−z′),
and because of Bose symmetry it satisfies ρz(z, z′) = ρz(z

′, z). This means that if we were to
plot ρz(z, z′), it would be symmetric about the lines z = z′ and z = −z′.

For a fragmented state like (2.95), most of the nonzero part of the z-OBDM lies along
the diagonal z = z′ (in the example here, this is because φL(r) is only nonzero for negative
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Figure 2.4: A comparison of an unfragmented (left) and fragmented (right) z-OBDM for
a double well with well minima at ±2. Notice that both plots have symmetry about the
lines z = z′ and z = −z′. The missing features in the fragmented plot compared with the
unfragmented plot represent the probabilities for destroying a particle with positive (negative)
z and creating one with negative (positive) z (i.e., tunneling). The diagonal density ρz(z, z)
is the total density of the system.

z, while the opposite is true for φR(r)). We can interpret this as meaning that there is low
probability of moving an atom from a region with z > 0 to one with z < 0, i.e., number
fluctuations are suppressed. On the other hand, for a non-fragmented state like (2.94), there
is nonzero z-OBDM along both diagonals z = z′ and z = −z′ (because φ0(r) is nonzero for
both positive and negative z). Hence, there is a high probability of moving atoms from one
side of the double well to the other. Interestingly, the density n(z) = ρ(z, z′) can be identical
in both cases, so it does not contain any information about the degree of fragmentation. See
Figure 2.4 for a graphical example of these z-OBDMs.

2.4.3 The Fragmentation and Depletion Parameters

For convenience, we define fragmentation and depletion parameters, F and D respectively,
that range from 0 to 1 depending on the degree of fragmentation and depletion, in analogy
to the squeezing parameter S. Reference [46] demonstrates that a condensate with G-fold
degeneracy in its ground state can fragment into G parts, assuming low degeneracy (G ≈ 1).
From the energies listed in Table 2.1, we see that the single-particle ground state has near-
degeneracy (i.e., G → 2) when L becomes large. Hence, it is reasonable to assume that,
for the double well, at most two natural orbitals participate in fragmentation, and the
rest, if occupied, constitute a small amount of depletion. Mathematically, this implies that
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n0 + n1 ≈ 1. This motivates us to define the following parameters:

F = 1− |n0 − n1| (2.97a)
D = 1− (n0 + n1). (2.97b)

With these definitions, a single condensate is represented by F ≈ D ≈ 0 and a doubly
fragmented condensate is represented by F ≈ 1 and D ≈ 0.

We would like to note, however, the unfortunate but unavoidable arbitrariness inherent in
these definitions, due to the fact that it is not clear cut how to distinguish fragmentation
from depletion in practice. As we shall see in our discussion of the two- and eight-mode
models in the next two chapters, the OBDM for an m-mode model can be written in terms
of exactly m natural orbitals. This means that, by construction, the two-mode model cannot
have depletion as we have defined it. In the case of the eight-mode model, for large values of
a we find situations in which the χ2(r) through χ7(r) natural orbitals are populated with
a few percent of the density each, and rather than vanishing in the thermodynamic limit,
these populations increase with increasing N (see Figure 4.9). Should this count as depletion
or fragmentation? The PIGS simulations have a different built-in limitation: the OBDM is
sampled on a discretized grid that has 51 entries on a side, so it can be diagonalized into 51
natural orbitals. Even in this case, there are situations in which a few percent of the system’s
density populates χ2(r). Is this really depletion, or is it a sign of three-way fragmentation?
Ultimately, we will stick with the definitions of F and D in Eq. (2.97) while warning the
reader of the ambiguity we just described.

2.5 Summary
In this chapter, we introduced the basic ideas necessary to understanding the rest of this
dissertation, including a description of Bose-Einstein condensation and the nature of the
external potential and interactions that characterize the Hamiltonian of our system. We
then discussed several methods for computing approximate ground states of the Hamiltonian,
including the mean-field approximation and multimode expansions. Finally, we defined
squeezing and fragmentation in terms of the width σn of the differential number distribution
n̂ and the eigenvalues ni of the one-body density matrix ρ(r, r′), and defined parameters to
characterize the amount of squeezing, fragmentation, and depletion exhibited by the system:

S = 1− σ2
n

N/4
(2.98a)

F = 1− |n0 − n1| (2.98b)
D = 1− (n0 + n1). (2.98c)
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Chapter 3

Two-Mode Model and Predictions

In this chapter, we discuss the two-mode model for a Bose-Einstein condensate in a double
well potential. After motivating the need for the model, we will introduce the two modes that
we will use to construct the model, and we will explore the structure of the Hamiltonian that
results from expanding in those modes, including implications for squeezing and fragmentation.
Finally, we will derive squeezing and fragmentation predictions as a function of interaction
strength for a variety of particle numbers and double well geometries. Some of these predictions
conflict with naive expectations about the relationships between these quantities, and we will
explore the physical explanations for these conflicts. These predictions will be revisited as
comparisons to our quantum Monte Carlo results in Chapter 6.

3.1 Motivation for the Multimode Expansion
In Section 2.2.3, we discussed two approximations that one can make to the many-body
double well Hamiltonian in order to compute the ground state: the mean-field approximation
(which leads to the Gross-Pitaevskii equation) and the multimode expansion. However, the
Gross-Pitaevskii formalism is inadequate for our purposes in this study because it is not
capable of exhibiting squeezing or fragmentation.

In the GP ground state, all atoms are in the state that is the solution of the GP
equation (2.40):

Ψ(r1, . . . , rN) =
N∏
i=1

ψGP (ri). (3.1)

Because the GP equation takes the form of a nonlinear Schrödinger equation with a symmetric
external potential, the state ψGP (r) must be an even function of z. By the arguments of
Section 2.3.2 (see the discussion after Eq. (2.65)), this means that the squeezing parameter
S = 0 for the GP ground state regardless of the value of a. Hence, we cannot use GP states
if we are interested in studying the effect of interactions on squeezing. Similarly, the GP
formalism fails in the analysis of fragmentation. No matter the value of a, the GP ground
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state results in a OBDM of the form of Eq. (2.94), for which there is no fragmentation. In
order to study either squeezing or fragmentation, we must go beyond GP to (at least) a
two-mode model.

3.2 The Two-Mode Model
In this section, we will discuss the states that make up the modes of the two-mode model
and the Hamiltonian that describes it.

3.2.1 The Modes

Recall that in multimode models we expand the field operator Ψ̂(r) in terms of a finite
number of single-body modes φi(r) to generate the Hamiltonian (2.42). For the two-mode
model, we choose modes that are linear combinations of the ground and first excited states
(ψg(r) and ψe(r)) of the double well potential. Because the terms in this potential depend on
only one coordinate each, the 3D double well energy eigenstate have the form of products of
the eigenstates of the 1D harmonic oscillator and 1D double well:

ψg/e(r) = χ0(x)χ0(y)φ0/1(z), (3.2)

where φ0(z) and φ1(z) are the (numerically generated) ground and first excited states,
respectively, of the 1D double well and

χ0(x) =
(mω
π~

)1/4

e−
mω
2~ x

2

=
1

π1/4
√
aho

e
− x2

2a2
ho , (3.3)

is the ground state of the 1D harmonic oscillator. The states conventionally used in the
two-mode model are linear combinations of the single-particle eigenstates (3.2) that are
localized in the left and right wells of the potential. These are

ψl/r(r) = χ0(x)χ0(y)φl/r(z), (3.4)

where
φl/r(z) =

1√
2

(φ0(z)± φ1(z)). (3.5)

See Figure 3.1 for examples of φ0/1(z) and φl/r(z) for various potentials. The shape of the
potential influences the qualitative features of these functions in important ways. In particular,
the higher and wider the barrier (i.e., the larger L), the more separated the wells and therefore
the more that φl/r(z) are confined to having nonzero values on only one side of the potential.
From Eq. (3.5), this is equivalent to the fact that the higher and wider the barrier, the more
equal |φ0(z)|2 and |φ1(z)|2 become. These observations will be very important when we
discuss the ways in which the shape of the potential influences the system’s ground state and
hence squeezing and fragmentation.
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Figure 3.1: The ground and first excited states of the z part of the double well potential
(φ0 and φ1), and the left/right localized linear combinations of those states (φl and φr) for
α = 4/81 a−2

ho and L = aho, 2 aho, and 3 aho.

Fock state representation Generic states in the two-mode model can be expressed as
Fock states with a definite number of atoms in each mode. Since the total number of atoms
N is held fixed, the different Fock states can be indexed by a single integer n, which we will
take to be the number of atoms in the ψl(r) mode. It is convenient to express these Fock
states in terms of creation and annihilation operators for the modes:

|n〉 =
1√

n!(N − n)!
(â†l )

n(â†r)
N−n |0〉 , (3.6)

where |0〉 is the vacuum. This expression includes implicit symmetrization of the modes via
the use of a permanent:

(â†l )
n(â†r)

N−n |0〉 =
1√
N !

perm



φl(r1) φl(r2) · · · φl(rN)
...

...
...

...
φl(r1) φl(r2) · · · φl(rN)
φr(r1) φr(r2) · · · φr(rN)

...
...

...
...

φr(r1) φr(r2) · · · φr(rN)


. (3.7)

Notice that the first n rows of the matrix are identical, as are the last N−n rows. This expres-
sion for the two-mode Fock states is equivalent to the expression in terms of wavefunctions
from Eq. (2.48).

Given this Fock state, a generic two-mode state can be written as

|ψ〉 =
N∑
i=0

cn |n〉 , (3.8)
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where
∑N

i=0 |cn|2 = 1.

3.2.2 The Hamiltonian

Now that we’ve chosen modes (see Eq. (3.4))), we can expand Ψ̂(r in terms of these modes:

Ψ̂(r) = ψl(r)âl + ψr(r)âr. (3.9)

Then the Hamiltonian (2.42) becomes

Ĥ = εlln̂l + εrrn̂r + εlr(â
†
l âr + â†râl)

+ aκllllâ
†
l â
†
l âlâl + aκrrrrâ

†
râ
†
rârâr + aκllrr(â

†
l â
†
l ârâr + â†râ

†
râlâl + 4â†l â

†
râlâr)

+ 2aκlllr(â
†
l â
†
l âlâr + â†râ

†
l âlâl) + 2aκlrrr(â

†
l â
†
rârâr + â†râ

†
rârâl). (3.10)

Because φl(z) = φr(−z), we know that two different εij parameters are actually equal if one
of them is given by the other with all l indices turned into r’s, and vice versa (i.e., εll = εrr
and εlr = εrl, the latter of which we already assumed in the above expression for Ĥ). A
similar situation holds for the κijkl parameters. Hence, we will simplify notation by defining

∆ = εll = εrr (3.11a)
δ = −2εlr (3.11b)
κ0 = κllll = κrrrr (3.11c)
κ1 = κlllr = κlrrr (3.11d)
κ2 = κllrr. (3.11e)

Additionally, we can use the commutation relations for the creation and annihilation operators
and the fact that n̂l + n̂r = NÎ (where Î is the identity operator) to simplify the Hamiltonian
further:

Ĥ = ∆(n̂l + n̂r)− δ/2(â†l âr + â†râl)

+ aκ0(â†l (âlâ
†
l − 1)âl + â†r(ârâ

†
r − 1)âr) + aκ2(â†l â

†
l ârâr + â†râ

†
râlâl + 4n̂ln̂r)

+ 2aκ1(â†l ârn̂l + â†r(âlâ
†
l − 1)âl + â†l (ârâ

†
r − 1)âr + â†râln̂r)

= ∆NÎ − δ/2(â†l âr + â†râl)

+ aκ0(n̂2
l + n̂2

r − n̂l − n̂r) + aκ2(â†l â
†
l ârâr + â†râ

†
râlâl + 4n̂ln̂r)

+ 2aκ1(â†l ârn̂l + â†râln̂l + â†l ârn̂r + â†râln̂r − â†râl − â
†
l âr)

= ∆NÎ − δ/2(â†l âr + â†râl)

+ aκ0(N2Î − 2n̂ln̂r −NÎ) + aκ2(â†l â
†
l ârâr + â†râ

†
râlâl + 4n̂ln̂r)

+ 2aκ1(N − 1)(â†râl + â†l âr). (3.12)
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Grouping terms with like operators produces the final form of the two-mode Hamiltonian:

Ĥ = N(∆ + a(N − 1)κ0)Î

− 2a(κ0 − 2κ2)n̂ln̂r

− (δ/2− 2a(N − 1)κ1)(â†l âr + â†râl)

+ aκ2(â†l â
†
l ârâr + â†râ

†
râlâl). (3.13)

In the Fock basis, this Hamiltonian has non-zero matrix elements only along its main
five diagonals (i.e., it is “pentadiagonal”). Because it is real and Hermitian, and therefore
symmetric, only three of the five diagonals have unique values. The formulas for the relevant
matrix elements are

〈n|n̂ln̂r|n〉 = n(N − n) (3.14a)

〈n+ 1|â†l âr|n〉 =
√

(n+ 1)(N − n) (3.14b)

〈n+ 2|â†l â
†
l ârâr|n〉 =

√
(n+ 1)(n+ 2)(N − n)(N − n− 1). (3.14c)

Interpretation of the two-mode parameters There are two natural bases in which we
can interpret the parameters (3.11): the “ground/excited” basis and the “left/right” basis.
Let’s first consider the energy parameters ∆ and δ, which are related to εij, in these bases.

In the left/right basis, we can interpret ∆ as the energy of the ψl(r) and ψr(r) modes,
which are equal by symmetry, and −δ/2 as the tunneling strength between these two modes.
These are related to the energies of the ground and excited states, Eg and Ee. To extract
this relation, we compute

εll/lr =

∫
ψ∗l (r)

(
− ~2

2m
∇2 + Vext(r)

)
ψl/r(r) dr

=
1

2

∫ (
ψ∗g(r) + ψ∗e(r)

)(
− ~2

2m
∇2 + Vext(r)

)
(ψg(r)± ψe(r)) dr

=
1

2

∫ (
ψ∗g(r) + ψ∗e(r)

)
(Egψg(r)± Eeψe(r)) dr

=
1

2
(Eg ± Ee). (3.15)

So ∆ is the average of the energies Eg and Ee, and δ is the energy difference Ee − Eg. In
general, ∆ is not very sensitive to the size and strength of the double well barrier (i.e., the
value of L) because the 2D harmonic oscillator part of the potential always contributes an
energy ~ωho and the 1D double well part will contribute a comparable value. On the other
hand, δ is quite sensitive to the value of L. As L grows, ψg(r) and ψe(r) become more
degenerate (i.e., Eg and Ee become closer in value), and hence δ approaches zero. See Table
3.1 for representative numerical values.

Now, we move on to the interpretation of κ0, κ1, and κ2. These parameters (multiplied
by a) give the strength of three different kinds of two-body interaction: respectively, these
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κ [~ωho/aho]
L [aho] ∆ [~ωho] δ [~ωho] κ0 κ1 κ2

1 1.38 4.28× 10−1 5.74× 10−2 9.09× 10−4 6.79× 10−3

2 1.39 1.85× 10−1 5.31× 10−2 −1.22× 10−3 2.85× 10−3

3 1.64 3.02× 10−3 6.93× 10−2 −1.25× 10−4 1.35× 10−6

Table 3.1: Values of the energies ∆ and δ and two-body interaction parameters κ0, κ1, and κ2

for three trap geometries (L = aho, 2, aho, and 3, aho, with α = 4/81 a−2
ho ). Notice that values

of δ, κ1, and κ2 are very sensitive to the value of L.

are two atoms interacting in the same well, two atoms interacting such that one stays in
its original well and the other tunnels through the barrier to the other well, and two atoms
interacting such that both tunnel through the barrier. As with ∆ and δ, we can express the
κ parameters both in the left/right basis and the ground/excited basis:

κ0 = κllll = κrrrr

= (κgggg + κeeee + 6κggee)/4 (3.16a)
κ1 = κlllr = κlrrr

= (κgggg − κeeee)/4 (3.16b)
κ2 = κllrr

= (κgggg + κeeee − 2κggee)/4. (3.16c)

The details of these computations are left as an exercise for the reader, except that we
comment that κggge = κgeee = 0 because ψe(r) is an odd function of z. Because κ0 and κ2

are both the integral of a positive function (|ψl(r)|4 and |ψl(r)|2|ψr(r)|2, respectively), they
are both positive. Additionally, because κ0 − |κ1| = (min(κgggg, κeeee) + 3κggee)/2 > 0 and
κ0−κ2 = 2κggee > 0, we know that κ0 > |κ1| and κ0 > κ2. We cannot say anything in general
about the sign of κ1 or the relative size of |κ1| and κ2.

However, we can say something about how the presence of the double well barrier (i.e.,
the size of L) affects the relative size of these three parameters. We defining a function f(r)
as the difference between the excited and ground state densities of the 1D double well:

f(r) = |ψe(r)|2 − |ψg(r)|2, (3.17)
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and then use it to reexpress κ0, κ1, and κ2:

κ0 =
1

4

∫
|ψg(r)|4 + |ψe(r)|4 + 6|ψg(r)|2|ψe(r)|2 dr

=

∫
2|ψg(r)|4 + 2|ψg(r)|2f(r) +

1

4
f 2(r) dr (3.18a)

κ1 =
1

4

∫
|ψg(r)|4 − |ψe(r)|4 dr

=

∫
−1

2
|ψg(r)|2f(r)− 1

4
f 2(r) dr (3.18b)

κ2 =
1

4

∫
|ψg(r)|4 + |ψe(r)|4 − 2|ψg(r)|2|ψe(r)|2 dr

=

∫
1

4
f 2(r) dr. (3.18c)

Because the ground and first excited states of the system become degenerate for high
barriers, f(r) vanishes in the L→∞ limit. Hence, κ0 � |κ1| � κ2 for large L. Otherwise,
κ0 > |κ1| ≈ κ2. See Table 3.1 for representative numerical values.

Interpretation of the two-mode operators We can interpret the terms of the two-mode
Hamiltonian (3.13) in the context of the Fock states (3.6) as follows.

Common energy, N(∆ +a(N − 1)κ0)Î The coefficient of Î is the energy that each
Fock state |n〉 has in common, which is a sum over all N atoms of the single-body energy
∆ of each atom and an interaction energy aκ0 associated with each pair of atoms. Because
the ground state of a Hamiltonian is unaffected by shifting the values on the diagonal of the
Hamiltonian by the same amount, we will ignore this term when analyzing squeezing and
fragmentation analytically.

State-dependent energy, −2a(κ0−2κ2)n̂ln̂r The term proportional to the operator
−n̂ln̂r represents the state-dependent energy of each Fock state, which is due to interparticle
interaction (notice that its coefficient is proportional to a). This operator is diagonal in the
Fock basis:

−n̂ln̂r |n〉 = −n(N − n) |n〉 . (3.19)

The eigenvalue n(N − n) is minimized for n = N/2, so the ground state of this operator is
|N/2〉, the Fock state which divides the atoms equally between the two wells.

One-body transition energy, −(δ/2 − 2a(N − 1)κ1)(â
†
l âr + â†

râl) The term
proportional to the operator −(â†l âr + â†râl) represents the energy due to transitions between
Fock states that involve a single atom switching from the ψl(r) mode to the ψr(r) mode, or
vice versa. One can think of this transition as one-body tunneling across the barrier. The
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strength of this term is related to δ, the “traditional” tunneling strength across the barrier,
but also to the scattering length a. In other words, the strength of the two-body interactions
has an effect on the amount of one-body tunneling across the barrier exhibited by a Fock
state. Depending on the sign of κ1 and the relative sizes of δ and a, the overall tunneling
coefficient can be positive, negative, or zero.

In the left/right Fock basis, the one-body tunneling operator is non-zero only along the
diagonals above and below the main diagonal. To compute the ground state for this operator,
it is simplest to convert it to the ground/excited basis:

−(â†l âr + â†râl) = −1

2

(
(â†g + â†e)(âg − âe) + (â†g − â†e)(âg + âe)

)
= −1

2
(n̂g − n̂e − â†gâe + â†eâg + n̂g − n̂e + â†gâe − â†eâg)

= n̂e − n̂g. (3.20)

In this form, it is clear that the ground state for this operator alone is the one in which all
of the atoms are in the ψg(r) state. We can convert this state back into the left/right Fock
basis with the help of Eq. (3.6):

|ψgs〉 =
1√
N !

(â†g)
N |0〉

=
1√

N !2N/2
(â†l + â†r)

N |0〉

=
1√

N !2N/2

N∑
n=0

(
N

n

)
(â†l )

n(â†r)
N−n |0〉

=
1

2N/2

N∑
n=0

√
n!(N − n)!

N !

(
N

n

)
|n〉

=
1

2N/2

N∑
n=0

√(
N

n

)
|n〉 . (3.21)

Hence, the ground state of the one-body tunneling operator is a binomially-distributed linear
combination of all of the Fock states |n〉. If the sign of the coefficient on this operator were
to be switched, then the ground state would have all of the atoms in the ψe(r) state, and a
similar computation would yield a ground state of

|ψgs〉 =
1

2N/2

N∑
n=0

(−1)N−n

√(
N

n

)
|n〉 . (3.22)

In other words, the magnitude of the coefficients would be the same, but their signs would
now alternate.
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Two-body transition energy, aκ2(â
†
l â

†
l ârâr + â†

râ
†
râlâl) The term proportional to

the operator â†l â
†
l ârâr + â†râ

†
râlâl represents the energy due to transitions between Fock states

that involve two atoms switching from the ψl(r) mode to the ψr(r) mode, or vice versa. Thus,
one can think of it as tunneling involving two atoms simultaneously. Because its coefficient is
proportional to a, this tunneling mediated entirely by the two-body interparticle interaction.

In the left/right Fock basis, this operator has non-zero values on the diagonals two above
and two below the main diagonal. One interesting consequence of this is that one can put
the operator into block diagonal form. For example, for N = 6, this transformation looks like

0 0 A1 0 0 0 0
0 0 0 A2 0 0 0
B1 0 0 0 A3 0 0
0 B2 0 0 0 A4 0
0 0 B3 0 0 0 A5

0 0 0 B4 0 0 0
0 0 0 0 B5 0 0


→



0 A1 0 0 0 0 0
B1 0 A3 0 0 0 0
0 B3 0 A5 0 0 0
0 0 B5 0 0 0 0
0 0 0 0 0 A2 0
0 0 0 0 B2 0 A4

0 0 0 0 0 B4 0


. (3.23)

This implies that the ground state for this operator should contain only the even or only the
odd Fock states. We can compute the ground state exactly by using the same trick of first
converting it to the ground/excited basis. We start by squaring Eq. (3.20):

(â†l âr)
2 + (â†râl)

2 + â†l ârâ
†
râl + â†râlâ

†
l âr = (n̂e − n̂g)2. (3.24)

We can rearrange this to produce

(â†l âr)
2 + (â†râl)

2 = (n̂e − n̂g)2 − (n̂r + 1)n̂l − (n̂l + 1)n̂r

= n̂2
g + n̂2

e − 4n̂gn̂e −N
= 6n̂2

g − 6Nn̂g +N(N − 1). (3.25)

This operator is diagonal in the ground/excited basis, and it’s ground state is the Fock state
with n = N/2 in that basis (this is independent of the sign of the coefficient of this operator).
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As before, we can convert this back to the left/right basis:

|ψgs〉 =
1

(N/2)!
(â†gâ

†
e)
N/2 |0〉

=
1

(N/2)!2N/2
((â†l )

2 + (â†r)
2)N/2 |0〉

=
1

(N/2)!2N/2

N/2∑
p=0

(
N/2

p

)
(â†l )

2p(â†r)
N−2p |0〉

=
1

(N/2)!2N/2

N∑
n=0

n∈evens

(
N/2

n/2

)
(â†l )

n(â†r)
N−n |0〉

=
1

2N/2

N∑
n=0

n∈evens

√
n!(N − n)!

(n/2)!((N − n)/2)!
|n〉 . (3.26)

As expected, the ground state consists of a linear combination of every other Fock state.

Angular momentum representation Many sources in the literature express the two-
mode Hamiltonian in terms of angular-momentum-like operators in addition to the form just
described. Although we will not use this representation explicitly, we include a description of
it here to facilitate the interpretation of our results in the context of work that does use it.

To begin, we define

Ĵx =
1

2
(â†l âr + â†râl) (3.27a)

Ĵy =
1

2i
(â†l âr − â

†
râl) (3.27b)

Ĵz =
1

2
(n̂l − n̂r), (3.27c)

from which one can compute

Ĵ2 =
N

2

(
N

2
+ 1

)
. (3.28)

We can also compute the commutation relations among these operators:

[Ĵi, Ĵj] = iεijkĴk. (3.29)

These are the SU(2) commutation relations, which the operators defined in (3.27) must obey
if we are to interpret them as angular momentum operators.
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The operators in the two-mode Hamiltonian (3.13) can be rewritten in terms of the Ĵi
operators:

n̂ln̂r = (Ĵz +
N

2
)(Ĵz −

N

2
)

= Ĵ2
z −

N2

4
(3.30a)

â†l âr + â†l âr = 2Ĵx (3.30b)

â†l â
†
l ârâr + â†l â

†
l ârâr = (Ĵx + iĴy)

2 + (Ĵx − iĴy)2

= 2(Ĵ2
x − Ĵ2

y )

= 2

(
2Ĵ2

x + Ĵ2
z −

N

2

(
N

2
+ 1

))
. (3.30c)

By substituting these into Eq. (3.13), we produce the two-mode Hamiltonian in the angular
momentum representation:

Ĥ = N(∆ + a(3N + 2)(κ0 − κ2)/2)Î

− 2a(κ0 − 3κ2)Ĵ2
z

− (δ − 4a(N − 1)κ1)Ĵx

+ 4aκ2Ĵ
2
x . (3.31)

The Fock basis |n〉 is still a good basis in which to express this Hamiltonian. Indeed, these
states are eigenstates of Ĵ2 and Ĵz:

Ĵ2 |n〉 =
N

2

(
N

2
+ 1

)
|n〉 (3.32a)

Ĵz |n〉 =

(
n− N

2

)
|n〉 , (3.32b)

Therefore, we can think of an N particle two-mode system as being equivalent to a spin-N/2
system, with the Fock states as the states of definite angular momentum projection in the z
direction.

3.3 Ground State Properties in the Two-Mode Model
Now that we have derived and interpreted the two-mode Hamiltonian, we can proceed with
considering the ground state properties of interest to us, namely squeezing and fragmentation.
In order to compute the ground state for a given potential, we numerically construct and
diagonalize the Hamiltonian; the state with the smallest eigenvalue is the ground state.
The Hilbert space for the system in the two-mode model has dimension N + 1, so this
diagonalization is feasible for N up to several thousand.
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In the Fock basis, the ground state looks like

|ψgs〉 =
N∑
n=0

cn |n〉 , (3.33)

where, by normalization,
N∑
n=0

|cn|2 = 1. (3.34)

Because the Hamiltonian has all real entries, it follows that all of the cn are real. Additionally,
because of the symmetry of the double well, the cn obey |cn| = |cN−n|. For the rest of this
section, we will assume that we have computed the ground state and therefore know the
weights cn.

3.3.1 Two-Mode Squeezing

Recall that S = 1− 4σ2
n/N , where σ2

n = 〈n̂2〉 − 〈n̂〉2. To compute a formula for the squeezing
parameter as a function of the two-mode ground state, we can make use of the expressions
for the expectation values of n̂ and n̂2 computed in Section 2.3.3. Because φl(z) = φr(−z),
it is straightforward to show that Nll = −Nrr and Nlr = Nrl = 0. The latter implies that
〈m|n̂|n〉 = 〈m|n̂2|n〉 = 0 for n 6= m, because the expressions for these expectation values
(Eqs. (2.73)), (2.77, (2.78), (2.79), (2.80), and (2.81)) are all proportional to Nlr.

Given these observations, Eq. (2.71) implies that

〈ψgs|n̂|ψgs〉 =
N∑
n=0

|cn|2 〈n|n̂|n〉

=
N∑
n=0

|cn|2(nNll + (N − n)Nrr)

= −Nll
N∑
n=0

|cn|2(N − 2n)

= −Nll

(
N − 2

N∑
n=0

n|cn|2
)
. (3.35)
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We can evaluate the sum:

N∑
n=0

n|cn|2 =
N

2
|cN/2|2 +

N/2−1∑
n=0

(n|cn|2 + (N − n)|cN−n|2)

=
N

2
|cN/2|2 +N

N/2−1∑
n=0

|cn|2

=
N

2

|cN/2|2 + 2

N/2−1∑
n=0

|cn|2


=
N

2
, (3.36)

where we made use of |cn| = |cN−n| and
∑N

n=0 |cn|2 = 1. Hence, 〈ψgs|n̂|ψgs〉 = 0.
Similarly, starting with Eq. (2.75) we find

〈ψgs|n̂2|ψgs〉 =
N∑
n=0

|cn|2 〈n|n̂2|n〉

=
N∑
n=0

|cn|2
(
N

4
+ n(n− 1)N 2

ll + (N − n)(N − n− 1)N 2
rr

+ 2n(N − n)(N 2
lr +NllNrr)

)
=
N

4
+N 2

ll

N∑
n=0

|cn|2((N − 2n)2 −N)

=
N

4
−N 2

ll

(
N −

N∑
n=0

|cn|2(N − 2n)2

)
. (3.37)

Hence, the squeezing parameter in the two-mode model is

S(2) = 1− 〈n̂
2〉 − 〈n̂〉2

N/4

= 1−

(
1− 4N 2

ll

(
1− 1

N

N∑
n=0

|cn|2(N − 2n)2

))

= 4N 2
ll

(
1− 1

N

N∑
n=0

|cn|2(N − 2n)2

)
, (3.38)

Depending on the values of the coefficients cn, the sum in this expression can range from 0
(for the state |N/2〉) to N2 (for the state 1√

2
(|0〉± |N〉)). These correspond to S(2) = 4N 2

ll and
−4(N−1)N 2

ll , respectively, which are the largest and smallest values possible for this squeezing
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L [aho] Nll S
(2)
max

1 0.420 0.704
2 0.453 0.820
3 0.500 0.999

Table 3.2: Values of Nll and S(2)
max for L = aho, 2 aho, and 3 aho. Notice that the stronger the

barrier, the more capacity the system has to squeeze.

parameter. Therefore, |N/2〉 corresponds to a maximally-squeezed state in this model, which
makes intuitive sense because it is a state with no number fluctuations whatsoever. Based
on the intuitive argument from Section 2.3 relating squeezing and interaction strength, we
expect this state to be the ground state in the a→∞ limit. To emphasize that no state can
have S(2) greater than this, we define

S(2)
max = 4N 2

ll . (3.39)

Similarly, 1√
2
(|0〉± |N〉) corresponds to a Schrödinger cat state, which is a state with maximal

number fluctuations; we expect it to be the ground state in the a→ −∞ limit. Finally, we
have seen previously that c2

n = 1
2N

(
N
n

)
when a = 0. For this state, the sum in S(2) equals N ,

and therefore S(2) = 0. This makes sense, since we designed the squeezing parameter such
that it equals 0 in the noninteracting case.

S
(2)
max is a function of the geometry of the double well trap. In particular, it is sensitive

to the amount of the mode φl(r) that is contained in the left half of the potential: if φl(r)

is nonzero only when z < 0, then Nll = 1/2 and S(2)
max = 1. However, if part of this mode

“leaks” into the right half of the potential (and vice versa for φr(r)), then maximal squeezing
is not possible because there is nonzero probability of measuring an uneven splitting of the
particles between the two wells even in the pure |N/2〉 state. By looking at Figure 3.1, we
see that this leakage is minimized when the barrier is stronger (i.e., for larger L), so larger L
leads to a higher possibility for squeezing. See Table 3.2 for representative values of S(2)

max.
In addition to this direct influence of double well geometry on the maximum squeezing

possible for a given system, we will also see in Section 3.4 that the inclusion of two-body
interaction terms in the two-mode Hamiltonian influences the system such that |N/2〉 is not
the ground state in the a→∞ limit. Instead, a state with nonzero number fluctuations is
the true ground state in that limit, and therefore the system can never achieve a squeezing of
S

(2)
max.
Finally, we comment on the relationship between the two-mode number operators n̂l

and n̂r and the operators L̂ and R̂ that come into the definition of the differential number
distribution. Recall that n̂ = (L̂− R̂)/2, and notice that an equivalent way of writing S(2) is

S(2) = S(2)
max

(
1− 4

N
〈ψgs|(

n̂l − n̂r
2

)2|ψgs〉
)
. (3.40)
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In the infinitely strong barrier limit (in which S(2)
max = 1), comparison of this expression with

the definition of S (Eq. (2.68)) implies that n̂l = L̂ and n̂r = R̂. However, these equalities
do not hold if S(2)

max 6= 1. One can thus interpret S(2)
max as compensating for the fact that, in

general, the operators in the two-mode Hamiltonian (n̂l and n̂r) are not the same as the
operators in the definition of squeezing (L̂ and R̂).

3.3.2 Two-Mode Fragmentation

We can study fragmentation in the two-mode model by expanding the OBDM (2.82) in terms
of the modes (3.4) and diagonalizing it to find the occupation of the natural orbitals. We
begin by simplifying the OBDM:

ρ(r, r′) =
N∑

n,m=1

cmcn 〈m|(ψl(r)â†l + ψr(r)â†r)(ψl(r
′)âl + ψr(r

′)âr)|n〉

=
N∑

n,m=1

cmcn (ψl(r)ψl(r
′)nδnm + ψr(r)ψr(r

′)(N − n)δnm

+ ψr(r)ψl(r
′)
√

(n+ 1)(N − n)δm,n+1 + ψl(r)ψr(r
′)
√
n(N − n+ 1)δm,n−1

)
=
N

2
(ψl(r)ψl(r

′) + ψr(r)ψr(r
′)) + A(ψl(r)ψr(r

′) + ψr(r)ψl(r
′)), (3.41)

where

A =
N−1∑
n=0

cncn+1

√
(n+ 1)(N − n). (3.42)

We can write this expression as a product of matrices, to make the diagonalization process
explicit:

ρ(r, r′) =
(
ψl(r) ψr(r)

)(N/2 A
A N/2

)(
ψl(r

′)
ψr(r

′)

)
=
(
ψg(r) ψe(r)

)(N/2 + A 0
0 N/2− A

)(
ψg(r

′)
ψe(r

′)

)
= n

(2)
0 ψg(r)ψg(r

′) + n
(2)
1 ψe(r)ψe(r

′), (3.43)

where the occupation numbers are given by

n
(2)
0/1 =

1

2
± 1

N

N−1∑
n=0

√
(N − n)(n+ 1) cncn+1. (3.44)

We see that the natural orbitals are the single-particle ground and first excited states of the
double well, and their occupations depend on the form of the ground state of the system.
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Using this result, we can express the fragmentation and depletion parameters (2.97) as

F (2) = 1− 2

N

∣∣∣∣∣
N−1∑
n=0

√
(N − n)(n+ 1) cncn+1

∣∣∣∣∣ (3.45a)

D(2) = 0. (3.45b)

Because this model only has two modes, D must equal 0. For both the maximally-squeezed
state |N/2〉 and the Schrödinger cat state 1√

2
(|0〉 ± |N〉), we have F (2) = 1 and the system is

maximally fragmented. On the other hand, for the noninteracting ground state, we can show
that the sum in this expression evaluates to N/2:

N−1∑
n=0

√
(N − n)(n+ 1) cncn+1 =

N !

2N

N−1∑
n=0

√
(N − n)(n+ 1)

n!(N − n)!(n+ 1)!(N − n− 1)!

=
N

2N

N−1∑
n=0

(
N − 1

n

)
=
N

2
. (3.46)

This implies that F (2) = 0. Hence, all of the particles are in the single-particle ground state
and there is no fragmentation, as one would expect for the noninteracting ground state.

3.4 Two-Mode Model Predictions
There have been many studies of the double well BEC system that have used the two-mode
model; these include [41–49]. The vast majority of these studies analyze a version of the
two-mode model in which κ1 = κ2 = 0 (we call this the nearly-degenerate two-mode model
and describe it below). Only [45, 48] studied the full two-mode Hamiltonian, and [49] studied
the two-mode Hamiltonian with only κ2 = 0. Additionally, only [43, 44, 47] addressed
squeezing in their work, and only [45–47] addressed fragmentation.

By explicitly constructing and diagonalizing the Hamiltonian (3.13) and inserting the
resulting ground state into the expressions for S(2) and F (2) (Eqs. (3.38)) and (3.45a), we can
analyze squeezing and fragmentation from within the full two-mode model. We will discuss
the predictions of this model here and use them to revise our conceptual understanding of
these phenomena. Before doing so, we will briefly discuss the nearly-degenerate two-mode
model to put our new results into context.

3.4.1 The Nearly-Degenerate Two-Mode Model

In the nearly-degenerate two-mode model, we assume that the two modes (3.4) are nearly
degenerate, that is, that φ2

0(z) ≈ φ2
1(z). Physically, this can be achieved by imposing a high
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and/or wide barrier (i.e., a large value of L). Mathematically, this amounts to assuming
that κgggg = κggee = κeeee, so that κ1 = κ2 = 0. This assumption reduces the two-mode
Hamiltonian to

Ĥ = −δ
2

(â†l âr + â†râl)− 2aκ0n̂ln̂r (3.47)

Ĥ = −δĴx − 2aκ0Ĵ
2
z . (3.48)

This Hamiltonian has two natural limits. In the case where tunneling dominates (a = 0), the

ground state is the usual noninteracting ground state, 1
2N/2

∑N
n=0

√(
N
n

)
|n〉, for which S = 0

and n0 = 1 (i.e., there is no squeezing or fragmentation). In the case where interactions
dominate (δ = 0), the ground state is |N/2〉, for which S = 1 and n0 = 1/2 (i.e., there
is maximal squeezing and fragmentation). This behavior matches the arguments made in
Sections 2.3 and 2.4.

We can be more complete than just describing two limiting cases. The authors of [43]
used the nearly degenerate two-mode model to compute an approximate analytical expression
for the squeezing parameter S. In our notation, this is given by

Snd2 = 1− 21/3


(

1
22/3+Na/ã

)1/2

a ≤ ãN

N
(
ã
a

)2
a > ãN

, (3.49)

where ã = δ/(210/3πκ) is purely a function of the geometry of the double well. As a ranges
between zero and infinity, Eq. (3.49) predicts that Snd2 will vary monotonically between 0
and 1 (apart from a discontinuity at a = ãN that is an artifact of the approximations that
went into the derivation of Snd2 and that vanishes with N like N−3).

Additionally, the authors of [45] studied fragmentation. Although they used the full
two-mode Hamiltonian, their results connect with the nearly degenerate two-mode model.
They derived two parameters, C(1) and C(2), to use as measures of the degree of fragmentation
exhibited by the system. They referred to these parameters as the degree of first- and
second-order coherence across the barrier, respectively. In our notation, they are given by

C(1) = 1− F (2) (3.50a)

C(2) =
N2 − 4σ2

n

N2 − 2N + 4σ2
n

=
N − 1 + S

N − 1− S
. (3.50b)

We see that C(1) is a proxy for the fragmentation parameter and C(2) is a proxy for the
squeezing parameter. For a nonzero interaction strength, [45] showed that C(1) monotonically
decrease from a maximum of 1 at low barrier heights to a minimum of 0 at high barrier
heights. This represents a monotonic increase in fragmentation. Similarly, they showed that
σn monotonically decrease from a maximum of

√
N/4 at low barrier heights to a minimum
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of 0 at high barrier heights, which represents a monotonic increase in squeezing. All of this
is consistent with our understanding that a high barrier generates degeneracy between the
modes of the two-mode model.

3.4.2 Squeezing Analysis

We’re now ready to consider our new two-mode model results. In Figure 3.2 we show the
behavior of S as a function of a for a variety of particle numbers and in three different double
well geometries for both the nearly degenerate two-mode model and the exact two-mode
model. In general, the models agree well only for small values of a, and the deviations
between them tend to grow with N . There are several features of the results in Figure 3.2
that we will discuss in detail: the lack of monotonicity of S (especially for low barriers), the
tendency of S to increase as the mode degeneracy increases (i.e., for higher barriers), and the
tendency of S to decrease as a function of N for large a. Ideally, one could simply use the
expression for S in Eq. (3.38) to explain these trends. For example, the form of S(2)

max implies
that, in general, one should expect more squeezing for potentials with higher degeneracy;
this is supported by the data. However, the difficulty with this approach is that there is no
explicit analytical expression for the cn’s for the exact two-mode Hamiltonian. Hence, we
will return to describing the physics behind the features in the S vs. a plot after discussing
the qualitative nature of the ground state.

The degree of squeezing is of course a reflection of the composition of the ground state. In
Figure 3.3, we visualize this composition by plotting the squared magnitude of the coefficients
cn = 〈n|ψground〉 as a function of a for 8 and 64 particles and for L = aho, 2 aho, and 3 aho. The
squeezing argument in Section 2.3 would suggest that these plots should smoothly transition
from a binomial distribution centered at n = N/2 to the sole occupancy of the n = N/2 state
as a increases from 0. This is clearly not what happens for 64 particles: for L = aho the
ground state settles into a very wide “striped” pattern, with occupancy of every other Fock
state, for L = 2 aho it settles into a different striped pattern, and for L = 3 aho it settles into
a narrow but wider-than-one-state distribution. Even for 8 particles, the distribution narrows
to |4〉 only for the highest barrier (L = 3 aho). Based on definition (3.38) for S(2), the width
or “spread” of these patterns gives a sense of the degree of squeezing: narrower means more
squeezing and vice versa because the quantity (N − 2n)2 is larger for states near n = N/2.
Given this understanding, we see that the progression of these patterns is consistent with the
squeezing plots in Figure 3.2.

In order to understand why the ground state looks the way it does, we will study it in
different parameter regimes. Typically, the nearly-degenerate two-mode Hamiltonian (3.47)
has been described in terms of three regimes: Rabi, Josephson, and Fock (see, e.g., [84]).
These regimes are defined by the value of the dimensionless parameter χ = 4aκ0/δ. We can
rewrite the nearly-degenerate two-mode Hamiltonian in terms of χ by dividing (3.47) by δ/2:

Ĥ = −(â†l âr + â†râl)− χn̂ln̂r. (3.51)



CHAPTER 3. TWO-MODE MODEL AND PREDICTIONS 54

0

0.2

0.4

0.6

0.8

1 L = aho, nd2 L = 2 aho, nd2

0
0.6

0.9

0.99

0.999
L = 3 aho, nd2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

L = aho, exact

0 0.1 0.2 0.3 0.4 0.5

L = 2 aho, exact

0
0.6

0.9

0.99

0.999

10−4 10−3 10−2 10−1 1

L = 3 aho, exact

S

N = 2 4 6 8 10 16 32 64 S
(2)
max

S

a [aho] a [aho] a [aho]

Figure 3.2: Squeezing S vs. scattering length a for various particle number N between 2
and 64 for three different potentials (L = aho, 2 aho, and 3 aho from left to right). The upper
and lower plots are of S as computed in the nearly degenerate two-mode model (i.e., using
Eq. (3.49)) and the exact two-mode model, respectively. Notice that the rightmost (L = 3 aho)
plots have a logarithmic scale for S. All plots also indicate the value of S(2)

max from Eq. (3.39).

Then, the Rabi regime has χ � N−1, the Josephson regime has N−1 � χ � N , and the
Fock regime has N � χ. Physically, the Rabi regime is the one in which the two-body
interactions are negligible compared with the effects of single-particle tunneling, whereas in
the other two regimes the two-body interactions dominate. The Josephson and Fock regimes
are further distinguished in that the interactions are so strong in the Fock regime that number
fluctuations are suppressed (i.e., the ground state is |N/2〉) while in the Josephson regime
there are still some fluctuations due to one-particle tunneling.

To make contact between these regimes and the exact two-mode model, we rewrite the
two-mode Hamiltonian as

Ĥ = −(â†l âr + â†râl) + χ1(a,N)Ĥ ′, (3.52)
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Figure 3.3: The components of the ground state (cn = 〈n|ψground〉) for the double well
potential as a function of scattering length a as computed in the exact two-mode model for
N = 8 (top row) and 64 (bottom row) for L = aho, 2 aho, and 3 aho (left to right). The vertical
lines indicate the boundaries between the Rabi-, Josephson-, and Fock-like regions, from left
to right in each plot (although only the L = 3 aho, N = 8 plot has a Fock-like regime visible
in the plot). In addition to the indicated regimes, the L = aho, N = 8 plot has a Fock-like
regime between a = 9.03 and 121 (and a Josephson-like regime thereafter) and the L = aho,
N = 64 plot has a Fock-like regime between a = 1.85 and 1.98 (and a Josephson-like regime
thereafter).

where

Ĥ ′ = −n̂ln̂r + χ2(â†l â
†
l ârâr + â†râ

†
râlâl), (3.53)

χ1(a,N) =
aχ∗1

a(N − 1)− a∗
, (3.54)

χ2 =
κ2

2(κ0 − 2κ2)
, (3.55)

and we have defined a∗ = δ/4κ1 and χ∗1 = −(κ0− 2κ2)/κ1 for convenience. Note that we have
divided out the coefficient of the one-body tunneling terms in this transformation in order to
put all of the a andN dependence into χ1. Note also that χ1 = χ and χ2 = 0 when κ1 = κ2 = 0,
so this Hamiltonian reduces to the nearly-degenerate two-mode Hamiltonian (3.51), as it
should. This motivates us to generalize the definitions of the three two-mode regimes: there
is a Rabi-like regime for |χ1| � N−1 a Josephson-like regime for N−1 � |χ1| � N , and a
Fock-like regime for N � |χ1|. In Figure 3.4 we plot |χ1| as a function of a for both positive
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Figure 3.4: Schematic plot of |χ1| as a function of a for both positive (red) and negative
(blue) κ1. For positive κ1, |χ1| asymptotes to |χ∗1|/(N − 1) from below, and there may or may
not be Josephson- or Fock-like regimes depending on the size of |χ∗1|/(N − 1) compared with
N and N−1. For negative κ1, |χ1| diverges at a∗/(N −1) and then asymptotes to |χ∗1|/(N −1)
from above; all three regimes are present for some range of a.

L [aho] a∗ [aho] χ∗1 χ2

1 117.6 −48.2 7.74× 10−2

2 −37.9 38.8 3.01× 10−2

3 −6.0 553.2 9.73× 10−6

Table 3.3: Values of a∗, χ∗1, and χ2, the parameters of the transformed two-mode Hamilto-
nian (3.52), for L = aho, 2 aho, and 3 aho.

and negative κ1. Depending on the values of the various parameters, there may or may not
be a Josephson- or Fock-like regime exhibited by the system, although there will always be a
Rabi-like regime. See Table 3.3 for representative numerical values for these parameters.

How close these are to the “true” Rabi, Josephson, and Fock regimes (i.e., the regimes as
defined in the nearly degenerate case) depends on the value of χ2, and hence the structure
of Ĥ ′. In Figure 3.5, we plot the ground state of Ĥ ′ as a function of χ2 for N = 8 and 64.
The ground state progresses from |N/2〉 to a striped pattern as χ2 increases. Recall from
the discussion around Eq. (3.23) that Ĥ ′ can be rewritten in a block-diagonal form with two
tridiagonal blocks, where each block involves either the even-numbered or the odd-numbered
Fock states. This accounts for the striped pattern. This also invites an analogy between
Ĥ ′ and (3.51) that allows us to identify χ2 � N−1 as the regime in which −n̂ln̂r dominates
(and hence the ground state has true Rabi, Josephson, and Fock regimes) and N � χ2 as the
regime in which two-body tunneling dominates.

We also note that there is an additional subtlety when χ2 > 1. In order for χ1 to truly be
determining the relative contribution of â†l âr + â†râl and Ĥ ′ in Hamiltonian (3.52), the two



CHAPTER 3. TWO-MODE MODEL AND PREDICTIONS 57

0

2

4

6

8

n

0
0.2
0.4
0.6
0.8
1

|c
n
|2

N = 8

10−410−310−210−1 1 10 102 103

χ2

20
24
28
32
36
40
44

n

0

0.2

0.4

0.6

0.8

1

|c
n
|2

N = 64

Figure 3.5: The components of the ground state of Ĥ ′ as a function of χ2 for N = 8 and 64.
The vertical line indicates the location of χ2 = N−1, which forms the boundary between the
values of χ2 for which true Rabi, Josephson, and Fock regimes are found (to the left) and not
found (to the right).

terms in Ĥ ′ must have both have coefficients that do not exceed 1 in magnitude. This does
not hold for large χ2. In that situation, one should pull the factor of χ2 out of Ĥ ′, and then
the Rabi-, Josephson-, and Fock-like regimes are defined instead by the size of the product
χ1χ2.

Given this interpretation of χ1 and χ2, we can understand the patterns in Figure 3.6,
in which is plotted the ground state of Eq. (3.52) as a function of χ1 for various χ2 for
N = 8 and 64. In the Rabi-like regime (small χ1), the ground state is close to the binomial
distribution of the one-body tunneling terms no matter the size of χ2. In the Fock-like regime,
(large χ1), the ground state varies from |N/2〉 to a wide striped pattern as χ2 increases. The
Josephson-like regime interpolates between the other two, with a narrow “neck” where the
binomial and striped patters touch. Recall that S varies like the width of these distributions,
so the neck corresponds to a peak in S.

With this understanding, we can now interpret the trends in two-mode data as seen in
Figs. 3.2 and 3.3. The closer we are to the degenerate two-mode system (i.e., larger L, smaller
κ2, and smaller χ2), the closer the ground state will be to |N/2〉 (as opposed to a striped
state) for large a. This implies that there will generally be more squeezing with increased
degeneracy. Likewise, S is more likely to vary monotonically with a the closer the system is
to the degenerate limit: because the large a state is narrower, the neck in the Josephson-like
regime (and hence the peak in S) will be less pronounced or non-existent. Finally, for large
a, χ1 = χ∗1/(N − 1). As N increases, this quantity decreases, and therefore the Hamiltonian
becomes increasingly dominated by the one-body tunneling terms, which have a wide ground
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Figure 3.6: The components of the ground state of Eq. (3.52) as a function of χ1 (or |χ1χ2|)
for N = 8 and 64 (top and bottom plots, respectively) and for a variety of χ2 (increasing
from left to right). Increasing χ2 corresponds to a weakening of the double well barrier. The
vertical lines indicate the boundaries between the Rabi-, Josephson-, and Fock-like regimes,
from left to right in each plot.

state. Hence, we expect S to decrease with increasing N for large a.

3.4.3 Fragmentation Analysis

To investigate fragmentation in the exact two-mode model, we plot the fragmentation
parameter F as a function of a for three geometries in Figure 3.7. Recall that the larger
F is, the more fragmentation there is in the system. In general, we see that fragmentation
increases with a. The exception occurs for low L and large a, for which n1 becomes greater
than n0, and therefore the amount of squeezing drops from a maximum of 1. However, the
most notable feature of this plot is that for low barriers (L = aho), systems with larger N
experience much more fragmentation than systems with smaller N , whereas the opposite is
true for systems with high barriers (L = 3 aho). Equivalently, we could describe this trend by
noting that for small N increasing the barrier height increases the amount of fragmentation,
while for large N increasing the barrier height decreases the amount of fragmentation.

We can understand these trends via the structure of the ground state, as illustrated in
Figure 3.3. First, consider the high barrier limit (L = 3 aho). Based on the arguments above,
we expect the ground state to be narrower (closer to |N/2〉) for smaller N . From the analytic
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Figure 3.7: The fragmentation F vs. scattering length a for various particle number N
between 2 and 64 for three different potentials (L = aho, 2 aho, and 3 aho, from left to right)
in the exact two-mode model. Because there are only two modes in this model, the depletion
parameter D equals 0.

form of F (2) given in Eq. (3.45a), we see that the terms in the sum depend on cici+1, i.e. the
product of two adjacent ci’s; the smaller the products, the more fragmentation there is. In
general, then, we expect a narrower ground state to have more fragmentation, because it will
have smaller cici+1 products than a wider ground state (indeed, if the ground state is |N/2〉,
all of the cici+1 products are zero). Hence, fragmentation decreases with N at large a for
L = 3 aho.

For low barriers (L = aho), the situation is different. As N increases, the ground state
widens (as with L = 3 aho), but it does so by developing a striped pattern. Despite the fact
that the pattern is wide for large N , the striping will cause the cici+1 products to be small
because for each pair of adjacent ci’s, one of them will be close to zero. Hence, there will be
more fragmentation for large N than for small N at large a for L = 3 aho.

The fragmentation pattern in the intermediate barrier regime (L = 2 aho) is clearly a
crossover between the low and high barrier situations.

3.5 Summary
In this chapter, we analyzed the interacting double well BEC system from the perspective of
a two-mode model. We defined the relevant modes and constructed the Hamiltonian, which
can be diagonalized for a for a given interacting strength a and double well geometry to
generate the ground state of the system. We then used this ground state to compute the
amount of expected squeezing and fragmentation.

Previous studies, often conducted with a restricted two-mode model only relevant when
the barrier is strong, predicted that squeezing should monotonically increase with a and that
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fragmentation should monotonically increase with barrier strength. Instead, by including all
possible contributions to the two-mode Hamiltonian, we find much more rich behavior:

1. Squeezing is not necessarily monotonic with a, especially for weak barriers.

2. For a given N , squeezing tends to increase with barrier strength.

3. For a given barrier strength, squeezing tends to decrease with N for large a.

4. For weak barriers and fixed a, fragmentation tends to increase with N , whereas for
strong barriers fragmentation tends to decrease with N .

These trends can be explained by understanding how a, N , and the double well geometry
parameters influence the relative importance of the terms in the exact two-mode Hamiltonian,
and therefore change the nature of the ground state. For example:

1. A strong barrier (χ2 � N−1) with strong interactions (|χ1| � N) corresponds to a
ground state close to |N/2〉, for which both squeezing and fragmentation are large.

2. Weak interactions (|χ1| � N−1) corresponds to a ground state close to the binomially-
distributed non-interacting ground state, for which both squeezing and fragmentation
are small. This is true regardless of the shape of the barrier.

3. A weak barrier (χ2 � N) with strong interactions (|χ1| � N) corresponds to a striped
ground state, for which both squeezing is large but fragmentation is small.

4. Increasing N tends to increase the relative “width” of the ground state, i.e., the number
of Fock states around |N/2〉 with significant contribution to the ground state.
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Chapter 4

Eight-Mode Model and Predictions

In the last chapter, we investigated the BEC double well system in the context of the two-mode
model. In this chapter, we make use of a recently proposed eight-mode model to investigate
the effects on squeezing and fragmentation of adding more modes to the multimode expansion.
This understanding will help us bridge the conceptual gap between the predictions of the
two-mode model and the results of the exact (“infinite-mode”) quantum Monte Carlo results
of Chapter 6.

4.1 The Eight-Mode Model
As an attempt to improve on the two-mode model, several authors [50, 85] have proposed an
eight-mode model in which the field operator Ψ̂(r) is expanded in terms of linear combinations
of the eight lowest energy eigenstates of the 3D double well potential. In this section, we will
discuss the states and Hamiltonian of this model.

4.1.1 The Modes

Recall from Section 3.2 that the modes of the two-mode model are products of states of the
2D harmonic oscillator and the 1D double well. This also holds for the eight-mode model; in
fact, two of the modes included in the eight-mode model are the modes from the two-mode
model, Eq. (3.4). However, there are subtleties associated with the choice of which modes
to include in the eight-mode model. We will explore these subtleties by first looking at the
harmonic oscillator and double well states individually, and then seeing how the choice of
double well geometry impacts the energies of the states when we combine them into modes.
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2D Harmonic Oscillator States

Let’s begin with the harmonic oscillator. The first three eigenstates of the 1D harmonic
oscillator are

χ0(x) =

(
1√
πaho

)1/2

e
− x2

2a2
ho (4.1a)

χ1(x) =

(
1√
πaho

)1/2√
2
x

aho
e
− x2

2a2
ho (4.1b)

χ2(x) =

(
1√
πaho

)1/2
1√
2

(
2x2

a2
ho

− 1

)
e
− x2

2a2
ho , (4.1c)

and of course, there are infinitely more of these. One can construct an eigenstate of the 2D
harmonic oscillator by taking a product of two of the 1D states:

χi,j(x, y) = χi(x)χj(y). (4.2)

This state has energy (i+ j + 1)~ωho. Hence, the 2D harmonic oscillator ground state has
{i, j} = {0, 0}; the first excited states have {i, j} = {1, 0} and {0, 1}; the second excited
states have {i, j} = {2, 0}, {1, 1}, and {0, 2}; and so on. In general, the pth 2D harmonic
oscillator energy level has energy E2D

p = (p+ 1)~ωho and degeneracy p+ 1, for p = 0, 1, . . ..
Because the 2D harmonic oscillator potential is circularly symmetric, it is possible to

write its eigenstates in terms of linear combinations of the χi(x) states that have definite
angular momentum in the z-direction. We can label these states with the usual azimuthal
angular momentum quantum number m. For a given level p, |m| can take values {p, p −
2, p − 4, . . . , 0} [86], which gives the same p + 1 degeneracy as above. Using the notation
χp,m(s, θ) (where s and θ are polar coordinates in the xy-plane), we have

χ0,0(s, θ) = χ0(x)χ0(y) =
1√
πaho

e
− s2

2a2
ho (4.3a)

χ1,±1(s, θ) =
1√
2

(χ0(x)χ1(y)± i χ1(x)χ0(y)) = χ0,0(s, θ)
s

aho
e±iφ (4.3b)

χ2,0(s, θ) =
1√
2

(χ0(x)χ2(y) + χ2(x)χ0(y)) = χ0,0(s, θ)

(
s2

a2
ho

− 1

)
(4.3c)

χ2,±2(s, θ) =
1

2
(χ0(x)χ2(y)− χ2(x)χ0(y))± i√

2
χ1(x)χ1(y) = χ0,0(s, θ)

s2

a2
ho

e±2iφ, (4.3d)

and so on.

1D Double Well States

The eigenstates φi(z) of the 1D double well are not analytically calculable, although we can
compute them numerically. We will denote a state’s energy by εi. Because these states are
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Figure 4.1: The second and third excited states of the z part of the double well potential
(φ2 and φ3), and the left/right localized linear combinations of those states (φ0,l and ψ0,r) for
α = 4/81 a−2

ho and L = aho, 2 aho, and 3 aho.

even about z for even i and odd about z for odd i, linear combinations of two consecutive
states are (roughly) localized in the left or right side of z = 0. Hence, we define

φq,l/r(z) =
1√
2

(φ2q(z)± φ2q+1(z)). (4.4)

The qth double well energy level has degeneracy 2 and, following the notation of Section 3.2.2,
energy ∆q = (ε2p + ε2p+1)/2, for q = 0, 1, . . .. The first pair of states φ0,l/r(z) is the same as
that from the two-mode model, and is plotted in Figure 3.1. For comparison (and because
these will be relevant to the eight-mode model) the second pair φ1,l/r(z) is plotted in Figure 4.1.
Notice that there is generally more “spillover” of these left- and right-localized states into the
“wrong” side of the double well for these states compared to the two-mode states. This is
related to the fact that higher barriers are required to achieve the same amount of degeneracy
between φ2q(z) and φ2q+1(z) for higher values of q; we can get a sense of this by comparing
the relevant energies in Table 2.1. This comparison will be helpful when we discuss the
differences in predicted squeezing between the two- and eight-mode states.

Constructing Modes

In our multimode models, each mode is chosen to be a product of a state χp,m(s, θ) and a
state φq,l/r(z). The modes with a given p and q have an energy Epq = (p+ 1)~ωho + ∆q and a
degeneracy 2(p+ 1). The ground state clearly has p = q = 0, but it is impossible to determine
the order of the rest of the modes without knowing the relative size of ~ωho and ∆q. This is
the subtlety to which we alluded to earlier: an n-mode approximation only makes sense if
one uses the n modes of lowest energy, which requires making additional assumptions about
the external potential.
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For the eight-mode model described in [50, 85], the additional assumption made is that
the shape of the double well part of the potential is such that we can treat the φq,l/r(z) states
as quasi-harmonic oscillator states for each well (i.e., φq,l/r(z) ≈ χq(z ± L)) with energy
∆q ≈ (q + 1/2)~ωho. In essence, we are assuming that the minima of the double well are
well-approximated by quadratic functions with the same curvature as the harmonic part of the
potential. With this assumption, the energy of a mode is given by Epq ≈ (p+ q + 3/2)~ωho.

We can now re-express the modes by taking advantage of the result in [86] that the states
of a 3D harmonic oscillator potential can be expressed in terms of three quantum numbers,
n, l, and m, that mimic the quantum numbers of the hydrogen atom. The principle quantum
number n, which we define by n = p+ q+ 1, determines a mode’s energy En = (n+ 1/2)~ωho
and takes on integer values starting with 1. The orbital quantum number l determines
a mode’s total angular momentum |L| =

√
l(l + 1)~ and is restricted to take on values

{n− 1, n− 3, . . . , 0} rather than all integer values between 0 and n− 1 as it would in the
hydrogen atom. The magnetic quantum number m determines the z-component of a mode’s
angular momentum Lz = m~ and takes on integer values from −l to l

With these definitions, the ground level (n = 1) has l = 0 and corresponds to the modes
with p = q = 0:

ψ
l/r
100(r) = χ0,0(s, θ)φ0,l/r(z). (4.5)

The first excited level (n = 2) has l = 1 and corresponds to the modes with {p, q} = {1, 0}
and {0, 1}:

ψ
l/r
210(r) = χ0,0(s, θ)φ1,l/r(z) (4.6a)

ψ
l/r
21±1(r) = χ1,±1(s, θ)φ0,l/r(z). (4.6b)

The second excited level (n = 3) has l = 2 and 0 and corresponds to the modes with
{p, q} = {2, 0}, {1, 1}, and {0, 2}:

ψ
l/r
300(r) = χ0,0(s, θ)φ2,l/r(z) (4.7a)

ψ
l/r
320(r) = χ2,0(s, θ)φ0,l/r(z) (4.7b)

ψ
l/r
32±1(r) = χ1,±1(s, θ)φ1,l/r(z) (4.7c)

ψ
l/r
32±2(r) = χ2,±2(s, θ)φ0,l/r(z). (4.7d)

In general, we have
ψ
l/r
nlm(r) = χp,m(s, θ)φq,l/r(z), (4.8)

with n = p+ q+ 1 and l = p+ q mod 2. Each level n has degeneracy 2
∑n

i=1 i. The two-mode
model truncates the set of included modes to the n = 1 level. The eight-mode model includes
both levels n = 1 and 2:

ψ
l/r
100(r) = χ0,0(s, θ)φ0,l/r(z) (4.9a)

ψ
l/r
210(r) = χ0,0(s, θ)φ1,l/r(z) (4.9b)

ψ
l/r
21±1(r) = χ1,±1(s, θ)φ0,l/r(z). (4.9c)
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Figure 4.2: Plot of the z part of the double well potential for V0 = 4 and L = aho, 3 aho,
and 9 aho, which are examples of potentials with a pancake, spherical, and cigar geometry,
respectively. We also include a plot of z2 to give a visual comparison between the curvature
of the potential in the z direction to what it would be in x and y. Notice that at the double
well minima, the spherical geometry has a similar curvature to z2, while the pancake and
cigar geometries have a much larger and smaller curvature, respectively, than z2.

The next sensible truncation would result in a twenty-mode model, and so on.
As we stated above, the modes (4.9) define a sensible eight-mode model only to the extent

that these are the modes of lowest energy, which is the case in the approximation in which
the curvature of the double well minima are similar in all three Cartesian directions. We will
refer to this case as the spherical geometry. However, there are two other cases to consider.
If the curvature in z is much higher than in x and y (“ωz” � ωho, which we refer to as the
pancake geometry), then the energy of the modes will be dominated by ∆q. Alternatively, if
the curvature in z is much lower than in x and y (“ωz” � ωho, which we refer to as the cigar
geometry), then the energy of the modes will be dominated by (p+ 1)~ωho. In either case,
modes with the same n will have different energies, and therefore we can no longer think of n
as indexing distinct energy levels.

To illustrate these ideas, we compare three geometries with the same barrier height but
with different locations of the double well minima; see Figure 4.2 for a plot of the potentials.
In Figure 4.3, we compare the energies of the n = 1, 2, and 3 levels of each of these geometries.
Notice that the spherical geometry is the only one for which all of the states in each level
have (almost) the same energy. For both the pancake and cigar geometries, this is not the
case, as we anticipated.

This, finally, allows us to explain why we chose the three double well geometries illustrated
in Figure 2.1. In order to apply the eight-mode model, we needed to choose geometries that
are in the spherical potential regime. As the plots in Figure 4.4 illustrate, this is true of our
geometries to good approximation. The salient difference among our chosen geometries is the
widely varying barrier strength. Hence, this choice allows us to study the effect of barrier
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(c) The “spherical” geometry

Figure 4.3: Plots of the energies of the n = 1, n = 2, and n = 3 single-particle modes of
the double well system for a “pancake” geometry (V0 = 4 ~ωho, L = aho), a “cigar” geometry
(V0 = 4 ~ωho, L = 9 aho), and a “spherical” geometry (V0 = 4 ~ωho, L = 3 aho). The integers
above the bars indicate the angular momentum of the modes, in the form l|m|. The n = 1
states correspond to the states of the 2-mode model, the n = 1 and n = 2 states combined
correspond to the modes of the 8-mode model, and including all three would correspond to a
20-mode model. The spherical geometry is the only one for which the energies of the modes
increase with n, so it is the only one for which the eight-mode model is appropriate.



CHAPTER 4. EIGHT-MODE MODEL AND PREDICTIONS 67

0

1

2

3

4

5

n = 1 n = 2 n = 3

E
[~
ω
h
o
]

00

11 10

20, 22 21

00

(a) L = aho

0

1

2

3

4

5

n = 1 n = 2 n = 3
E

[~
ω
h
o
]

00

11 10

20, 22 21
00

(b) L = 2 aho

0

1

2

3

4

5

n = 1 n = 2 n = 3

E
[~
ω
h
o
]

00

11 10

20, 22 21 00

(c) L = 3 aho

Figure 4.4: Plots of the energies of the modes in the eight-mode model (n = 1 and 2) as well
as in the n = 3 level, for α = 4/81 a−2

ho and various L. The integers above the bars indicate
the angular momentum of the modes, in the form l|m|. Notice that for each L, the energies
of the modes in each level are comparable, and the energies of modes from different levels
are relatively distinct. Thus, the eight-mode model is appropriate to use for these three
geometries.
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strength on the relationships among squeezing, fragmentation, and interaction strength while
being able to use intuition gained from the eight-mode model.

The notation (4.8) that we chose for the modes is informative, but cumbersome. To
simplify the notation, we simply number the modes according to the following system:

ψ1(r) = ψr100(r) ψ2(r) = ψl100(r)

ψ3(r) = ψr210(r) ψ4(r) = ψl210(r)

ψ5(r) = ψr211(r) ψ6(r) = ψl211(r)

ψ7(r) = ψr21−1(r) ψ8(r) = ψl21−1(r). (4.10)

Fock State Representation

As in the two-mode model, states in the eight mode-model can be expressed in terms of a
basis of Fock states, each with a fixed number of particles in each mode:

|n1, n2, . . . , n8〉 =
1√

n1!n2! · · ·n8!
(â†1)n1(â†2)n2(â†3)n3(â†4)n4(â†5)n5(â†6)n6(â†7)n7(â†8)n8 |0〉 , (4.11)

For the purpose of constructing an explicit matrix representation of the Hamiltonian of the
system, we would like to number these Fock states with a single integer, such that the first
N + 1 states match the two-mode Fock states. The choice of how to accomplish this is
arbitrary, but we present here one possible numbering scheme.

First, it is useful to know the size of the Hilbert space of the system given N atoms in M
modes, which is equivalent to the number of ways of arranging N identical balls in M bins.
Imagine that all of the balls were laid out in a line. To divide them into M bins, one can
insert M − 1 partitions in various places along the line of balls. This is equivalent to starting
with N +M − 1 identical objects, and choosing M − 1 of them to be partitions. The number
of ways of doing this, and hence the dimension of the Hilbert space, is

D(N,M) =

(
N +M − 1

M − 1

)
=

(N +M − 1)!

N !(M − 1)!
. (4.12)

Next, we describe a scheme for ordering the Fock states. Suppose that we have a Fock
state |n1, n2, . . . , nM〉 with a particular occupation of each mode, and this Fock state has
index i. To find the next Fock state (i+ 1), we follow this algorithm:

1. Starting with n1, find the first nonzero occupation number. Let’s call this np.

2. Increment np+1 by 1.

3. Set n1 equal to np − 1.

4. If p 6= 1, set np equal to 0.
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Fock index
Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 3 2 1 0 2 1 0 1 0 0 2 1 0 1 0 0 1 0 0 0
2 0 1 2 3 0 1 2 0 1 0 0 1 2 0 1 0 0 1 0 0
3 0 0 0 0 1 1 1 2 2 3 0 0 0 1 1 2 0 0 1 0
4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

Table 4.1: A table of the occupation numbers for the Fock states in a system with 3 atoms
and 4 modes, ordered by Fock index.

If we give the Fock state with n1 = N the index 0, then this algorithm assigns a unique
integer to each possible Fock state given a particular N and M . See Table 4.1 for an example
of this scheme for N = 3 and M = 4.

Given a particular Fock state with a set of occupation numbers np, it is possible to
determine its index i without resorting to starting from the i = 0 state and following this
algorithm. Because of the way that the states are ordered, we know that a state with a given
values of nM must come after all of the states with smaller nM ; by counting all such states,
we get an integer iM which is less than or equal to the index of the state. Likewise, a state
with a given value of nM and nM−1 must come after all states with the same nM and smaller
nM−1; we can again count all such states to get an integer iM−1. In general,

iq =

nq−1∑
p=0

D(

q∑
j=1

nj − p, q − 1). (4.13)

The index of the state is then simply a sum of the iq’s:

i =
M∑
q=2

iq

=
M∑
q=2

nq−1∑
p=0

D(

q∑
j=1

nj − p, q − 1). (4.14)

4.1.2 The Hamiltonian

As with the two-mode model, we expand the field operators in terms of the eight modes (4.10):

Ψ̂(r) =
8∑
i=1

ψi(r)âi, . (4.15)
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and similarly for Ψ̂†(r). Expanding the Hamiltonian (2.42) in terms of so many modes is a
rather messy process, so we will proceed by breaking the Hamiltonian into two parts:

Ĥ1 =
8∑

i,j=1

â†i âj εij (4.16a)

Ĥ2 =
8∑

i,j,k,l=1

â†i â
†
j âkâl κijkl. (4.16b)

Then Ĥ = Ĥ1 + aĤ2.
To compute Ĥ1, it is useful to first compute εij. Using the notation

E0 = 1 +
1

2
(ε0 + ε1) (4.17a)

E1 = 1 +
1

2
(ε2 + ε3) (4.17b)

E2 = 2 +
1

2
(ε0 + ε1) (4.17c)

δ0 = ε1 − ε0 (4.17d)
δ1 = ε3 − ε2, (4.17e)

it is straightforward to show that

εij =



E0 δ0/2 0 0 0 0 0 0
δ0/2 E0 0 0 0 0 0 0

0 0 E1 δ1/2 0 0 0 0
0 0 δ1/2 E1 0 0 0 0
0 0 0 0 E2 δ0/2 0 0
0 0 0 0 δ0/2 E2 0 0
0 0 0 0 0 0 E2 δ0/2
0 0 0 0 0 0 δ0/2 E2


. (4.18)

Thus, we have

Ĥ1 = E0(n̂1 + n̂2) + E1(n̂3 + n̂4) + E2(n̂5 + n̂6 + n̂7 + n̂8)

+
δ0

2
(â†1â2 + â†5â6 + â†7â8 + h.c.) +

δ1

2
(â†3â4 + h.c.). (4.19)

We see that tunneling is only allowed between modes with the same set of n, l, and m
quantum numbers. Since the component of a Fock state’s angular momentum in the z
direction consists of ~ times the sum of the m values for the Fock state’s occupied modes,
one-body tunneling between two Fock states must conserve Lz.
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Next we study Ĥ2, starting with a computation of κijkl:

κijkl =
2π~2

m

∫
φ∗i (r)φ∗j(r)φk(r)φl(r) dr

= 2π~ωhoa2
ho

∫ 2π

0

∫ ∞
0

χpi,−mi(s, θ)χpj ,−mj(s, θ)χpk,mk(s, θ)χpl,ml(s, θ) s ds dθ

×
∫ ∞
−∞

φqi,l/r(z)φqj ,l/r(z)φqk,l/r(z)φql,l/r(z) dz

=
2

π
~ωho

∫ ∞
0

e−2s2s1+pi+pj+pk+plds

∫ 2π

0

ei(mk+ml−mi−mj)φdφ

×
∫ ∞
−∞

φqi,l/r(z)φqj ,l/r(z)φqk,l/r(z)φql,l/r(z) dz

= 4~ωho2−
1
2

(4+|mi|+|mj |+|mk|+|ml|)Γ

(
1

2
(2 + |mi|+ |mj|+ |mk|+ |ml|)

)
δ0,mk+ml−mi−mj

×
∫ ∞
−∞

φqi,l/r(z)φqj ,l/r(z)φqk,l/r(z)φql,l/r(z) dz (4.20)

Because of the φ integral, this quantity equals zero unless mk +ml −mi−mj = 0, which is a
condition that can only be satisfied if the two-body tunneling from modes k and l to modes i
and j conserves Lz. If mi = mj = mk = ml = 0 (i.e., the tunneling involves any four of the
modes ψ1(r), ψ2(r), ψ3(r), and ψ4(r)), then

κijkl = ~ωho
∫ ∞
−∞

φqi,l/r(z)φqj ,l/r(z)φqk,l/r(z)φql,l/r(z) dz. (4.21)

For all other Lz-conserving two-body tunneling (e.g., from two modes with m = 0 to one
with m = 1 and one with m = −1), we have

κijkl =
1

2
~ωho

∫ ∞
−∞

φqi,l/r(z)φqj ,l/r(z)φqk,l/r(z)φql,l/r(z) dz. (4.22)

Remember that the 1D double well states are only known numerically, so it is therefore
not possible to analytically compute the value of the z integral in these expressions. However,
one can determine that the integral can take on one of nineteen possible distinct values
depending on the particular set of modes being integrated. Because of this complexity, we
forgo writing out an explicit expression for Ĥ2; the sheer number of terms would make this
expression both overwhelming and uninformative, and one can generate the Hamiltonian
matrix computationally without explicitly writing out all these terms.

The critical take-away from the analysis of the eight-mode Hamiltonian is that there are
no tunneling processes that can change the value of Lz of the system. This observation will
be very useful when computing the ground state of the system.
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4.1.3 Ground State Properties

As in the two-mode case, we can express the eight-mode Hamiltonian in a Fock basis and
diagonalize the resulting matrix to find the ground state. Based on Eq. (4.12), the size of
this matrix is

D(N, 8) =
(N + 7)!

5040N !
, (4.23)

which grows very rapidly with N . This restricts the practical usefulness of the eight-
mode model to small N because of the computational cost of diagonalizing large matrices.
However, recall that none of the terms in the Hamiltonian can change Lz, the projection
of the total angular momentum of the system along the z direction. This implies that the
Hamiltonian has a block-diagonal form, with each block corresponding to a different value
of m ∈ {−N,−N + 2, . . . , N − 2, N}. By symmetry, the ground state has m = 0, so one
can make the diagonalization process easier by only diagonalizing the m = 0 block of the
Hamiltonian. This block has dimension

Dm=0(N, 8) = D(N, 4)D2(0, 2) +D(N − 2, 4)D2(1, 2) + · · ·+D(0, 4)D2(N/2, 2)

=

N/2∑
i=0

D(N − 2i, 4)D2(i, 2)

=
7(N + 4)

4(N + 7)(N + 1)
D(N, 8), (4.24)

where the first term in the sum corresponds to the part of the Hilbert space with all of
the atoms in m = 0 modes; the second corresponds to N − 2 atoms in m = 0 modes, one
atom in an m = 1 mode, and one atom in an m = −1 mode; and so on. For large N , the
size of this restricted Hamiltonian is a factor of N smaller than the full Hamiltonian. By
diagonalizing only this restricted matrix, we were able to compute eight-mode model results
for up to N = 10. See Figure 4.5 for a plot that compares the rate of growth of D(N, 8) and
Dm=0(N, 8).

Squeezing and Fragmentation

One can in principle compute analytical expression for the squeezing, fragmentation, and
depletion parameters in the eight-mode model (S(8), F (8), and D(8)) that are analogous to
those in the two-mode model (Eqs. (3.38), (3.45a), and (3.45b)). However, these expressions
are sufficiently complicated in form that they are not very illuminating, so we will not compute
them analytically here.

However, there is one aspect of squeezing that we can consider analytically. Recall that
in the two-mode model, the maximum possible amount of squeezing was restricted to be
less than or equal to S(2)

max (Eq. (3.39)). Using eight-mode model notation, we can write this
quantity as

S(2)
max = 4N 2

11. (4.25)
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Figure 4.5: The growth of the Hilbert space of the eight-mode model Hamiltonian as a
function of N . The extremely rapid growth of the size of the Hamiltonian matrix makes it
impractical to diagonalize for N greater than about 10.

L [aho] N11 N33 S
(2)
max S

(8)
max

1 0.420 0.358 0.704 0.512
2 0.453 0.380 0.820 0.577
3 0.500 0.473 0.999 0.895

Table 4.2: Values of N11, N33, S
(2)
max, and S

(8)
max for L = aho, 2 aho, and 3 aho. Notice that

the stronger the barrier, the more capacity the system has to squeeze. Also notice that the
amount of squeezing possible in the modes with z part φ1,l/r(z) is consistently smaller than
in the modes with φ0,l/r(z).

We could equally well have written it in terms of modes 2, 5, 6, 7, or 8 instead of 1, because all
of these modes have the same form of the z part of their wavefunctions (φ0,l/r(z)). However,
modes 3 and 4 have a different z part (φ1,l/r(z)), which suggests that we define an analogous
expression

S(8)
max = 4N 2

33. (4.26)

Recall that Nii effectively measures the fraction of a mode i on the “wrong” side of z = 0; the
more “spillover,” the smaller Nii. In general, the modes with φ1,l/r(z) will have more spillover
for a given double well geometry than states with φ0,l/r(z) (one can see this by comparing the
wavefunctions illustrated in Figs. 3.1 and 4.1). This means that S(8)

max < S
(2)
max; see Table 4.2

for representative values of S(2)
max and S(8)

max.). Hence, we expect that a ground state will have
less squeezing if it is dominated by modes 3 and 4 (i.e., ψl/r210(r)) than if it is dominated by
the other six modes, even if in both cases it has the same value of nl − nr.
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Figure 4.6: Squeezing S vs. scattering length a for various particle number N between 2
and 10 for three different potentials (L = aho, 2 aho, and 3 aho, from left to right) in the
eight-mode model. Notice that the rightmost (L = 3 aho) plot has a logarithmic scale for S.
The horizontal lines indicate the values of S(2)

max and S(8)
max, defined in Eqs. (4.25) and (4.26),

respectively.

4.2 Eight-Mode Model Predictions
To the best of our knowledge, no studies have been done of squeezing or fragmentation from
within the eight-mode model. In this section we rectify this gap while building more intuition
that will help us interpret the results of our quantum Monte Carlo simulations in Chapter 6.

4.2.1 Squeezing Analysis

In Figure 4.6 we show the behavior of the squeezing parameter S (Eq. (2.68)) as a function
of the scattering length a for a variety of particle numbers and in three different double
well geometries for the eight-mode model. We do not go beyond 10 particles because of the
computational cost of diagonalizing the resulting Hamiltonian, discussed above. We see that
the squeezing behavior for the low barriers (L = aho and 2 aho) looks qualitatively similar to
the equivalent cases in the nearly degenerate and exact two-mode models (see Figure 3.2).
However, for L = 3 aho we see qualitatively different behavior: the squeezing has a maximum,
and it is in general smaller than for the two-mode case. We would like to account for this
behavior, despite the fact that we cannot analyze the eight-mode Hamiltonian as easily as we
did the two-mode Hamiltonian because of its complexity.

One way to do this is to look at the composition of the ground state via plots analogous
to Figure 3.3. However, because the Hilbert space is so large, it is not useful to plot
the contribution to the ground state of each individual Fock state. Instead, we sum the
contributions of all Fock states for which the difference in Nl and Nr is the same, regardless
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Figure 4.7: A representation of the ground state for the double well potential as a function
of scattering length a as computed in the eight-mode model for N = 8 and various L (1, 2,
and 3, from left to right). The quantity plotted is the sum of |cn|2 for the components of the
ground state that have a given value for the difference between the number of particles in left
and right modes.

of which exact modes are occupied; see Figure 4.7 for the resulting plot. By comparing
Figure 4.6 and Figure 4.7, we see that a narrower distribution corresponds to more squeezing
(as in the two-mode model), and that, therefore, the maximum in the L = 3 aho squeezing
data corresponds to a narrow neck in the state distribution. Hence, the distribution of Fock
states in the ground state accounts for the maxima that differentiates the two- and eight-mode
squeezing predictions for L = 3 aho.

Another way to think about the cause of the maximum in the L = 3 aho squeezing data
is in terms of the quantities S(2)

max and S
(8)
max, which are also plotted in Figure 4.6. Recall

that we argued earlier that states with more contributions from atoms in 210 modes would
exhibit less squeezing than states with more contributions from 100 and 21±1 modes. In
Figure 4.8, we plot the fraction of particles in the eight-mode model ground state that are in
the 210 modes. For the largest a plotted, that fraction reaches as high as 8 percent, with
larger fractions for larger N . This is reasonable: in general, the repulsive interaction between
the atoms drives them away from each other, and in an eight-mode model, one way that the
atoms can avoid each other is by occupying modes with different values of m. Hence, we
expect that, for a given a, increasing the number of particles in the system will result in a
larger fraction of them occupying the 210 modes. The occupation of these modes can then
reduce the amount of squeezing via the spillover mechanism proposed above.

4.2.2 Fragmentation Analysis

In Figure 4.9, we plot the fragmentation parameter F and depletion parameter D (Eqs. (2.97a)
and (2.97b), respectively) as a function of scattering length a in the eight-mode model for
a variety of particle numbers and double well geometries. The main qualitative differences
between these prediction and those of the two-mode model in Figure 3.7 are that the
eight-mode states exhibit less fragmentation and more depletion.
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Figure 4.8: Fraction f210 of particles in the 210 modes of the eight-mode model as a function
of the scattering length a for various particle number N between 2 and 10 and for three
different potentials (L = aho, 2 aho, and 3 aho, from left to right). The total fraction of
particles in the 100 and 21± 1 modes (not shown) is given by 1− f .

Recall that F and D are defined in terms of n0 and n1, the occupation numbers of the
first two natural orbitals. In the two-mode model, these are the only two occupation numbers,
so there is no depletion. In the eight-mode model, there are eight natural orbitals to occupy.
The fact that there is less fragmentation and simultaneously more depletion in the eight-mode
case implies that the occupation of the orbitals is spread out among more than just the
first two, but that n0 is larger relative to n1 in the eight-mode case than in the two-mode
case. This is not particularly surprising. In the two-mode case, the only way to reduce n0

is to increase n1. However, because the eight-mode states can occupy the other six natural
orbitals, a reduction in n0 can be compensated by an increase in any of n1 through n7. Hence,
conditions that would have led to pure fragmentation in the two-mode case leads to less
fragmentation with some depletion in the eight-mode case.

4.3 Summary
In this chapter, we analyzed the interacting double well BEC system from the perspective of
an eight-mode model. The modes for this model are more complicated than those for the
two-mode model; among other differences, they exhibit nonzero angular momentum. We
noted that the projection of this angular momentum along the z-axis for a Fock state is
conserved under the action of the eight-mode Hamiltonian. We also noted that the shape of
the double well influences the energies of the modes, and therefore determines whether or not
an eight-mode description of the system is appropriate.

The eight-mode Hamiltonian is quite complicated and has a Hilbert space that grows
rapidly with N ; the larger the Hilbert space, the more difficult numerical diagonalization
of the Hamiltonian. Although we did not write out the Hamiltonian in detail, we did give
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Figure 4.9: The fragmentation F (top) and depletion D (bottom) vs. scattering length a for
various particle number N between 2 and 10 for three different potentials (L = aho, 2 aho,
and 3 aho, from left to right) in the eight-mode model.

arguments to show that it has a block diagonal form, with each block containing states with
a specific value of Lz. By ignoring all blocks but the one with Lz = 0, we can make the
problem of diagonalizing the Hamiltonian to find the ground state somewhat more tractable.
The largest value of N for which we could diagonalize the Hamiltonian is 10, for which Ĥ
has a dimension of 2548.

Finally, we investigated squeezing, fragmentation, and depletion in the eight-mode ground
state. Compared with the two-mode ground state, we found that the eight mode ground state

• exhibits less squeezing, especially for L = 3 aho,

• exhibits a maximum in S for L = 3 aho, and

• exhibits less fragmentation and more depletion.

Physically, these effects can be understood as a consequence of the occupation of modes
in the n = 2 energy level in addition to the two-mode model’s n = 1 modes. Because the
n = 2 modes spread into the “wrong” well more so than the n = 1 modes, they lead to more
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particle fluctuations across the barrier for the same value of Nl −Nr. Hence, n = 2 modes
will tend to suppress both squeezing and fragmentation in eight-mode ground states relative
to two-mode ground states, to the extent that they are occupied. The presence of a maximum
in the squeezing parameter comes about because of a competition between this effect and
the usual suppression of particle fluctuations that comes about because of increasing the
scattering length. Finally, the presence of more than two natural orbitals in the eight-mode
model allows for non-zero depletion when the “extra” modes are occupied, as opposed to the
two-mode model in which depletion as we have defined it is not possible.
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Chapter 5

Quantum Monte Carlo:
The Path Integral Ground State Method

In last two chapters, we explored the ground state properties of the double well BEC system
by approximating its Hamiltonian via multimode expansions. We found that the results
that one obtains, especially for moderate to large scattering lengths, are quite sensitive
both to the number of modes in the expansion and the number of “negligible” terms kept
in the Hamiltonian. Assuming that this pattern continues, it would be desirable to have an
“infinite-mode” expansion, i.e., to solve for the ground state exactly. In order to do so, we use
the path integral ground state quantum Monte Carlo method, which is a member of a family
of computational methods that are used to simulate quantum many-body systems. In this
chapter, we describe our implementation of PIGS in detail in anticipation of the simulated
results we will present in Chapter 6.

5.1 Overview
Quantum Monte Carlo (QMC) is a class of computer algorithms that simulates quantum
many-body systems. In QMC, the quantum problem to be solved is expressed in terms of
Richard Feynman’s path integral formulation of quantum mechanics [87], and then these
quantum paths are mapped onto a classical system of interacting polymer chains. At their
core, all QMC algorithms work by using the Monte Carlo method to evaluate the high-
dimensional integrals that result from this mapping. Because Monte Carlo integration is
inherently stochastic, there is statistical uncertainty in the results produced by QMC; this
is the price one pays for being able to solve the exact quantum problem. Fortunately, this
uncertainty can be reduced with increased simulation time as well as by clever choices of
various computational details, as discussed in detail in Section 5.3.

QMC methods can be classified based on a wide variety of criteria, such as whether the
particles in the system live on a lattice or in the continuum, whether the method is computing
the system’s ground state or a (mixed) state at finite temperature, or whether the method
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uses the variational principle or projection operators to compute the desired state. In our
work, we use the path integral ground state (PIGS) method [58], which is an exact ground
state (T = 0) QMC method (where “exact” means that, in principle, all systematic errors can
be reduced below the level of statistical errors). PIGS uses imaginary time propagation to
project out the ground state of the system from a trial wave function, which is chosen to be as
good an approximation to the true ground state as possible. The imaginary time propagator
is discretized into a number of time slices, so that the path of each particle through imaginary
time can be thought of as a classical chain of beads (one per slice) connected by links, with
the chains interacting with each other. The links represent the kinetic energy part of the
imaginary time propagator while the interactions between the chains represents the potential
energy part of the propagator. Through this discretization, the problem of calculating the
ground state properties of the system (like the squeezing parameter S) are reduced to that
of evaluating integrals of very high dimension (3NM for a three-dimensional system of N
particles with M time slices). These integrals are solved using Monte Carlo techniques.

PIGS provides several key advantages over other ground state methods, the most significant
of which is the ability to evaluate unbiased estimators for any observable [58, 60]; this means
that the choice of trial wave function only impacts the efficiency of the computation, rather
than biasing the result. PIGS may also be tailored to evaluate off-diagonal observables such as
the one-body (or N -body) reduced density matrix directly and without bias, as demonstrated
by an unprecedented degree of accuracy and agreement with experiment in the evaluation of
the condensate fraction for bulk liquid helium [59].

Computationally, PIGS is very well suited to trivial parallelization due to the statistical
nature of the technique, requiring neither communication between parallel processes nor
shared memory. In addition, the memory requirements for PIGS are modest, with even
the largest system sizes requiring only on the order of 1 GB of memory. Each parallel run
can, however, require a long run time in order to sufficiently de-correlate from the initial,
randomly-chosen state of the system.

In our PIGS implementation for the double well system, we use a fourth-order approx-
imation to the imaginary time propagator [88, 89], modified to incorporate hard sphere
interactions between the bosons [90] where the hard sphere diameter is the s-wave scattering
length a. For a trial wave function, we use a form that is the product of N copies of the
ground state of a single particle in a double well (which would be the true ground state in the
absence of interactions) and a pair correlation (Jastrow) term that is the exact zero-energy
s-wave scattering solution for two hard spheres. A good trial function is essential here
because the energy level structure of the system, i.e. the very small energy gap between the
ground and first excited states, would require a very long path in imaginary time to achieve
convergence with a poor approximation to the ground state wavefunction.

In the next sections, we discuss the general structure of the PIGS method and particular
details of our implementation of it.
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5.2 Path Integral Ground State
As we stated above, PIGS allows us to calculate the ground state properties of a many-body
quantum system. This does not mean that PIGS allows us to compute the ground state
wavefunction itself; instead, one can only calculate the ground state expectation value of
whatever operators may be of interest. In this section, we discuss how to do this using
imaginary time propagation, Monte Carlo integration, and Metropolis sampling to implicitly
determine the ground state probability density distribution.

5.2.1 Imaginary Time Propagation

The first key idea behind PIGS is imaginary time propagation. Given a many-body system
described by a Hamiltonian Ĥ, one can guess a trial many-body ground state wavefunction
|ψT 〉. The trial wavefunction can be expanded as a sum of the energy eigenstates |ψn〉 of Ĥ:

|ψT 〉 =
∞∑
n=0

cn |ψn〉 . (5.1)

We would like to be able to eliminate all of the components of this trial function apart
from the true ground state |ψ0〉. To do so, we can apply the operator e−τĤ/~, which we can
interpret as an imaginary time translation operator or imaginary time propagator (by analogy
to the (real) time translation operator e−itĤ/~). Upon normalization, this produces a new
state |χ〉:

|χ〉 =
e−τĤ/~ |ψT 〉√
〈ψT |e−2τĤ/~|ψT 〉

=
e−τĤ/~

∑∞
n=0 cn |ψn〉√∑∞

m=0

∑∞
n=0 c

∗
mcn 〈ψm|e−2τĤ/~|ψn〉

=

∑∞
n=0 cne

−τEn/~ |ψn〉√∑∞
m=0

∑∞
n=0 c

∗
mcne

−2τEn/~ 〈ψm|ψn〉

=

∑∞
n=0 cne

−τEn/~ |ψn〉√∑∞
n=0 |cn|2e−2τEn/~

=
c0 |ψ0〉+

∑∞
i=1 e

−τ(En−E0)/~cn |φn〉√
|c0|2 +

∑∞
i=1 e

−2τ(En−E0)/~|cn|2
. (5.2)

If we assume a non-degenerate ground state, then E0 is (by definition) the smallest energy
and therefore

lim
τ→∞
|χ〉 =

c0√
|c0|2

|ψ0〉 = eiφ0 |ψ0〉 . (5.3)
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In other words, in the limit of long imaginary time τ , we can use the imaginary time
propagator to project the ground state out of the trial wavefunction (up to an irrelevant
global phase factor which we can eliminate by choosing c0 to be real). Also, notice that the
normalization factor here is not equal to 1 as it would be if we had applied the real time
translation operator; this is because the imaginary time translation operator is not unitary.
Regardless, the normalization factor is irrelevant in the PIGS algorithm, for reasons that we
will come back to shortly, so we will ignore it from now on.

Expectation Values

In order to estimate the ground state expectation value of an operator of interest Ô, one can
compute the expectation value of that observable with respect to the state |χ〉:

〈χ|Ô|χ〉 = 〈ψT |e−τĤ/~Ôe−τĤ/~|ψT 〉 . (5.4)

Because this quantity approaches the actual ground state expectation value in the τ →∞
limit, it can be used as unbiased estimator of that expectation value. Of course, in an actual
simulation τ cannot really be set to infinity, but it can in principle be made sufficiently
large such that any error that arises from its finiteness is smaller than the statistical error
associated with the simulation.

To compute this estimator for 〈Ô〉 in a simulation, it must be written in a particular
basis. We choose a position basis, written in terms of a 3N -dimensional position vector
|R〉 = |r1, r2, · · · , rN〉 that encodes the position of all N particles. Unfortunately, it is in
general not possible to express 〈R|e−τĤ/~|R′〉 in this basis analytically; it is only possible to
approximate it in the τ → 0 limit. This seems to be a problem: we need large τ to decay to
the ground state but small τ to properly express the imaginary time propagator. To remedy
this problem, we replace τ by βM :

〈χ|O|χ〉 =

〈
ψT

∣∣∣∣ (e−βĤ/~)M Ô
(
e−βĤ/~

)M ∣∣∣∣ψT〉 , (5.5)

where β is small enough to well-approximate the propagator while M is large enough to
decay the trial function to the ground state. We then insert 2M + 1 copies of the identity in
the position basis

Î =

∫
|R〉 〈R| dR, (5.6)

into this expression to convert it into an integral:

〈χ|Ô|χ〉 =

∫
〈ψT |R0〉 〈R0|e−βĤ/~|R1〉 . . . 〈RM−1|e−βĤ/~|RM〉O(RM)

× 〈RM |e−βĤ/~|RM+1〉 . . . 〈R2M−1|e−βĤ/~|R2M〉 〈R2M |ψT 〉 dR0 . . . dR2M

=

∫
ψ∗T (R0)ψT (R2M)

2M−1∏
i=0

G(Ri, Ri+1, β)O(RM) dR0 . . . dR2M . (5.7)
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For notational convenience, we define G(Ri, Ri+1, β) = 〈Ri|e−βĤ/~|Ri+1〉 as the imaginary
time propagator in the position basis.

Off-Diagonal Observables

The discussion thus far implicitly assumes that Ô is diagonal in the position basis, so that
〈Ri|Ô|Rj〉 = 〈Ri|Rj〉O(Rj) = δ(Ri −Rj)O(Rj). Suppose instead that we were interested in
computing on off-diagonal observable, P̂ , for which 〈Ri|P̂ |Rj〉 = P (Ri, Rj). Then we would
modify Eq. (5.7):

〈χ|P̂ |χ〉 =

∫
ψ∗T (R0)ψT (R2M+1)

2M∏
i=0
i 6=M

G(Ri, Ri+1, β)P (RM , RM+1) dR0 . . . dR2M+1. (5.8)

Because there is no propagator connecting the configurations M and M + 1, the path is said
to be “broken.” Apart from that, the paths are sampled in the same way as for diagonal
observables, and the value of 〈P̂ 〉 is estimated by averaging over P (RM , RM+1) for the
accepted paths.

The OBDM is an off-diagonal observable. To compute it, the path of only one of the N
particles is broken while rM = rM+1 for the others [59]. One then uses the set of accepted
paths to make a histogram of the occurrences of particular pairs of zbrokenM and zbrokenM+1 ; this
histogram is ρ(z, z′). In order to normalize the OBDM, we multiply it by a factor such that
the sum of its eigenvalues (i.e., the total occupation of the natural orbitals) is 1. Because
the histogram has to have a finite bin size, this method can generate non-physical negative
eigenvalues, but these vanish given long enough simulations.

The Local Energy

The calculation of the energy, i.e., the expectation value of the Hamiltonian, is a special case
that is worth discussing. While Ĥ is an off-diagonal operator in the position representation
because the kinetic energy contains derivatives, it obviously commutes with the imaginary
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time propagator. This allows us to define the so-called local energy EL:

〈χ|Ĥ|χ〉 =

〈
ψT

∣∣∣∣ (e−βĤ/~)M Ĥ
(
e−βĤ/~

)M ∣∣∣∣ψT〉
=

〈
ψT

∣∣∣∣ (e−βĤ/~)2M

Ĥ

∣∣∣∣ψT〉
=

∫
ψ∗T (R0)

2M−1∏
i=0

G(Ri, Ri+1, β) 〈R2M |Ĥ|ψT 〉 dR0 . . . dR2M

=

∫
ψ∗T (R0)ψT (R2M)

2M−1∏
i=0

G(Ri, Ri+1, β)
〈R2M |Ĥ|ψT 〉
〈R2M |ψT 〉

dR0 . . . dR2M

=

∫
ψ∗T (R0)ψT (R2M)

2M−1∏
i=0

G(Ri, Ri+1, β)EL(R2M) dR0 . . . dR2M , (5.9)

where

EL(R) =
ĤψT
ψT

∣∣∣∣∣
R

. (5.10)

Hence, the local energy can be computed like a diagonal observable despite the fact that
Ĥ is not diagonal. Since ψT and Ĥ are both known, it is straightforward to calculate this
function and to estimate its value with the PIGS method. One can equivalently estimate the
energy using EL(R0), and in fact the best option is to do both and average the results.

5.2.2 Monte Carlo Integration

Given an analytical form for G(Ri, Ri+1, β), the problem of computing the ground state
expectation value of an observable has been transformed into that of solving an integral
of very high (3MN) dimension, Eq. (5.7). For one-dimensional numerical integration, one
typically uses some form of quadrature to numerically compute the value of the integral; this
requires k evaluations of the integrand, where k is the number of quadrature points. For
a D-dimensional integral, this method requires kD function evaluations. The integrals we
need to be able to solve have D = 3NM ≈ 104. Even if we only had 2 quadrature points
per dimension, evaluation of an integral with this number of dimensions would require about
2104 function evaluations. Assuming a typical processor speed of 109 evaluations per second,
this computation would take about 102984 times the age of the universe to complete. This is
clearly a problem.

Monte Carlo integration was designed to solve exactly this problem. Instead of using
a deterministic method, like quadrature, Monte Carlo integration uses statistical sampling
of the integrand to calculate the value of a definite integral of the form

∫
π(X)f(X)dX.

Here π(X) is interpreted as a probability distribution over which the integral of f(X) is
computed, and X is known as the configuration of the system. The configurations are
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generated randomly based on some update method that proposes a new configuration Xj

given an old configuration Xi (with probability P(Xi → Xj)) and an algorithm which decides
whether or not the new configuration is accepted (with probability A(Xi → Xj)). This
process can take whatever form we like, as long as it results in the accepted configurations
being distributed according to π(X). After k accepted configurations have been generated,
the value of the integral may be estimated by taking an average:∫

π(X)f(X)dX ≈ 1

k

∑
acceptedX

f(Xi). (5.11)

How do we ensure that the accepted configurations are distributed according to π(X)?
First, let’s define a transition probability p(Xi → Xj), which is the probability of transitioning
from a configuration Xi to a configuration Xj. It is given by

p(Xi → Xj) = P(Xi → Xj)A(Xi → Xj). (5.12)

In other words, the probability of transitioning from Xi to Xj is the probability of proposing
a transition from Xi to Xj (which is determined by our update methods, discussed in
Section 5.3.3) times the probability of accepting the proposed transition (which we will
describe shortly). These transition probabilities must satisfy∑

j

p(Xi → Xj) = 1, (5.13)

because the probability of transitioning from Xi to any other configuration is 1. Additionally,
it must be the case that the probability of being in a configuration Xi is the sum of the
probability of being in any configuration times the probability of transitioning from that
configuration to Xi:

π(Xi) =
∑
j

π(Xj)p(Xj → Xi). (5.14)

These expression can be rewritten as

(1− p(Xi → Xi)) =
∑
j 6=i

p(Xi → Xj) (5.15a)

π(Xi)(1− p(Xi → Xi)) =
∑
j 6=i

π(Xj)p(Xj → Xi). (5.15b)

Making the obvious substitution results in the constraint that the transition probabilities
must satisfy: ∑

j 6=i

π(Xi)p(Xi → Xj)− π(Xj)p(Xj → Xi) = 0. (5.16)

In principle, this constraint can be satisfied by many choices of transition probabilities. In
practice, the usual choice that is made is to enforce detailed balance:

π(Xi)p(Xi → Xj) = π(Xj)p(Xj → Xi) ∀ i, j, (5.17)
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which is equivalent to

π(Xi)P(Xi → Xj)A(Xi → Xj) = π(Xj)P(Xj → Xi)A(Xj → Xi) ∀ i, j. (5.18)

In order to satisfy detailed balance, the acceptance probabilities A(Xi → Xj) are determined
using the Metropolis algorithm [91]:

1. Randomly generate a configuration X1, and write it to the list of accepted configurations.

2. Generate a new configurationX2 by some update method, with probability P(X1 → X2).

3. Accept the configuration X2 with probability

A(X1 → X2) = min

(
1,
π(X2)

π(X1)

P(X2 → X1)

P(X1 → X2)

)
. (5.19)

4. If X2 is accepted, write it to the list of accepted configurations and go to step 2,
using it as the “old” configuration. If X2 is rejected, write X1 to the list of accepted
configurations and go to step 2, using X1 as the “old” configuration.

This algorithm is run until a predetermined number of accepted configurations is generated,
and then they are averaged to give an estimate of the integral as in Eq. (5.11). The error
associated with this estimate may be estimated by the standard error of the distribution of
values A(Xi).

In addition to ensuring detailed balance by choosing acceptance probabilities according
to the Metropolis algorithm, we must also ensure that our simulation is ergodic, which means
that it must be able to eventually generate any allowed configuration of the system starting
with any allowed configuration. If this is not the case, then there will be some configurations
with nonzero π(X) that cannot be sampled by the simulation even in principle, and therefore
there is no way for the simulation to reproduce π(X) correctly. Ergodicity is determined
by our choice of update methods: we require that whatever method we choose proposes
transitions between allowed configurations with nonzero probability.

To connect this back to the calculation of 〈χ|Ô|χ〉, we can directly map the integral (5.7)
to the Monte Carlo integration method by defining X = {R0, R1, · · · , R2M}, f(X) = O(RM ),
and

π(X) = ψ∗T (R0)ψT (R2M)
2M−1∏
i=0

G(Ri, Ri+1, β). (5.20)

Had we included normalization, π(X) would have the properties of a probability distribution:
π(X) < 1 for all X, and

∫
π(X)dX = 1. However, because it is the ratio of probabilities

π(X1) and π(X2) that comes into the Metropolis acceptance probability (5.19), we can ignore
the normalization without any consequences. Hence, the Monte Carlo algorithm generates
configurations of atom coordinates that are distributed according to a probability distribution
which is the square of the ground state wavefunction (in the limit of large M), and this
method thereby allows us to evaluate the integral that we need in order to compute the
ground state properties of the system.
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5.3 Computational Details
When implementing a PIGS method, one needs to make choices about three main parts of
the implementation: the trial function, the propagator, and the update method(s). The
double well system presents challenges that make these choices particularly important:

1. The symmetry of the double well creates a relatively small energy gap between the
ground state and the first excited state, which means that it takes a long amount of
imaginary time to decay the trial function to the ground state. More imaginary time
means more slices and therefore longer simulation times to get useful results, which
quickly becomes prohibitive. A higher-order propagator and better trial function can
help to mitigate this challenge.

2. A strong double well barrier makes it difficult to move particles from one side to the
other, which can spoil ergodicity by making if difficult to transition from configurations
with a certain number of particles on one side of the barrier to configurations with a
different number. This problem is serious when calculating the squeezing parameter
and the OBDM, both of which require good sampling of different number configurations.
Therefore, we must choose path update methods that address this issue.

Below we describe computational details regarding the trial function, the propagator, and
the update methods, with explicit consideration of mitigating these challenges.

Floating point errors Additionally, we comment here on a general technique that we use
to avoid floating point errors in our computations. Double precision floating point numbers in
Fortran 90 can store values between 10−308 and 10308. Notice that the form of the probability
distribution (5.20) is a product of about M numbers that are all less than one. Even if they
were each as large as 0.1, the computation of π(X) can easily overwhelm the precision of
Fortran’s floats because the number of slices M can be as high as several thousand.

To solve this problem, π(X) is computed in terms of the sum of the natural logarithm of
these small numbers:

lnπ(X) = lnψ∗T (R0) + lnψT (R2M) +
2M−1∑
i=0

lnG(Ri, Ri+1, β). (5.21)

In fact, all similar quantities in the PIGS algorithm are computed in this way. This is helpful
because the natural logarithm of a number of size 10b has size b:

ln(a10b) = ln a+ b ln 10, (5.22)

so therefore floats in Fortran can easily support the addition and subtraction of the logarithms
of many very small numbers without incurring floating point errors. The logarithm can always
be exponentiated if needed. For example, in the Metropolis acceptance probability (5.19), we
use

π(X2)

π(X1)
= elnπ(X2)−lnπ(X1). (5.23)
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5.3.1 Trial Function

Any trial function used in the PIGS algorithm will eventually converge to the ground state as
long as it has nonzero overlap with the ground state. Of course, the closer it is to the ground
state to begin with, the fewer imaginary time slices are necessary for this convergence to
happen. In the noninteracting case, the exact ground state is simply a product of the single
particle ground states for each particle:

Ψgs(R) =
N∏
i=1

ψg(ri) (a = 0), (5.24)

where ψg(ri) = χ0(xi)χ0(yi)φ0(zi), a product of the analytical harmonic oscillator ground
state wavefunction in the x and y directions and a numerically calculated one-dimensional
double well ground state wave function in the z direction. To take into account interactions,
we include pair correlation (Jastrow) terms of the form 1− a/rij in our trial function:

ψT (R) =
N∏
i=1

ψg(ri)
N∏
j<k

(
1− a

rjk

)
, (5.25)

where rij = |ri− rj|. This pair correlation function is the exact zero-energy s-wave scattering
solution for two hard spheres of diameter a [79].

As we stated, the ground state wavefunction of the 1D double well potential must be
computed numerically. We do this using a shooting method [92, Section 18.1] in Mathematica,
which computes the wavefunction for |z| ≤ zc, where zc is a cutoff chosen so that the
wavefunction is close to zero there. This method proceeds by numerically solving the
Shrödinger equation over the interval |z| ≤ zc as an initial value problem with ψ(−zc) = 0
and ψ′(−zc) = 1. Of course, we do not know the correct eigenenergies in advance. Instead,
we think of the energy ε in the Shrödinger equation as a parameter that can be varied, so that
the wavefunction is a function of both z and ε. The eigenenergies and eigenstates are then
the ones for which ψ(zc, ε) = 0. For |z| > zc, we set the wavefunction equal to eA+Bz+Cz2+Dz3 ,
with the coefficients of the cubic polynomial chosen so that the wavefunction is continuous
at zc and has continuous first, second, and third derivatives there. This ensures that the
Laplacian of the trial function, which must be computed to evaluate the local energy, is
smooth at zc.

Computing the Local Energy

Recall that the local energy (5.10) depends on the trial function and on the Hamiltonian,
which we can write as

Ĥ = −λ∇2
R + V (R), (5.26)

where λ = ~2/2m, ∇R =
∑N

i=1∇i =
∑N

i=1(∂xixi + ∂yiyi + ∂zizi), and V (R) contains all of
the external and interaction potential terms. In order to avoid floating point errors, our
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PIGS code does its computations using the natural logarithm of quantities like ψT (R) and
its derivatives:

lnψT (R) =
N∑
i=1

lnψg(ri) +
N∑
j<k

ln

(
1− a

rjk

)

=
N∑
i=1

(
− ln(

√
πaho)−

1

2a2
ho

(x2
i + y2

i ) + lnφ0(zi)

)
+

N∑
j<k

ln

(
1− a

rjk

)
(5.27a)

∇R lnψT (R) =
N∑
i=1

(
− 1

a2
ho

(xi xi + yi yi) +
d

dzi
lnφ0(zi) zi

)
+

N∑
j<k

(∇j +∇k) ln

(
1− a

rjk

)

=
N∑
i=1

(
− 1

a2
ho

(xi xi + yi yi) +
d

dzi
lnφ0(zi) zi

)
(5.27b)

∇2
R lnψT (R) =

N∑
i=1

(
− 2

a2
ho

+
d2

dz2
i

lnφ0(zi)

)
+

N∑
j<k

(∇2
j +∇2

k) ln

(
1− a

rjk

)

= −2N

a2
ho

+
N∑
i=1

d2

dz2
i

lnφ0(zi)− 2a2

N∑
j<k

1

(rjk − a)2r2
jk

. (5.27c)

These quantities and the helpful vector calculus relations

∇R ln f =
∇Rf

f
(5.28a)

∇2
R ln f =

∇2
Rf

f
− |∇Rf |2

f 2
, (5.28b)

allow for the explicit calculation of an expression for the local energy:

EL(R) = −λ∇
2
RψT (R)

ψT (R)
+ V (R)

= −λ
(
∇2
R lnψT (R) + |∇R lnψT (R)|2

)
+ V (R)

= −λ

(
−2N

a2
ho

+
N∑
i=1

(
−x

2
i + y2

i

a4
ho

+
φ′′0(zi)

φ0(zi)

)
− 2a2

N∑
j<k

1

(rjk − a)2r2
jk

)
+ V (R). (5.29)

5.3.2 Propagator Decomposition

As noted earlier, it is in general not possible to write the imaginary time propagator
G(Ri, Ri+1, β) = 〈Ri|e−βĤ/~|Ri+1〉 analytically, with the exception of a few cases for which the
exact solution is known. In the absence of an exact solution, one can approximately evaluate
the propagator by using operator algebra to express the exponential of the Hamiltonian in
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terms of exponentials of the kinetic and potential parts of the Hamiltonian. Because these
generally do not commute with each other, this method does not usually allow for an analytic
form for the propagator. However, if β � 1 then we may write the propagator in a form
that can indeed be evaluated analytically when terms proportional to higher powers of β are
ignored. For our short-time propagator, we use a fourth-order propagator decomposition for
the external potential and modify the free particle part of the propagator to incorporate the
hard sphere interaction.

External Potential

First, we would like to take care of the external potential part of the propagator. In general,
we want to use a propagator expansion that gives accurate results for as large a value of β as
possible, because for a fixed amount of imaginary time, larger β means fewer time slices and
therefore less computational time needed to get results.

The simplest propagator expansion that one can make to split off the external potential
is the Trotter approximation [93], which is accurate to first order in β:

e−β(T̂+V̂ ) = e−βT̂ e−βV̂ +O(β2). (5.30)

Here T̂ and V̂ can be any operators, but we will think of them for now as the usual kinetic
and potential energy operators of the system. There is a simple modification of the Trotter
approximation that produces an expression accurate to second order in β:

e−β(T̂+V̂ ) = e−
β
2
V̂ e−βT̂ e−

β
2
V̂ +O(β3). (5.31)

A more complex expansion due to Chin [88, 89] is accurate to fourth order in β:

e−β(T̂+V̂ ) = e−
β
6
V̂ e−

β
2
T̂ e−

2β
3
V̂Ce−

β
2
T̂ e−

β
6
V̂ +O(β5), (5.32)

where
V̂C = V̂ +

β2

48
[V̂ , [T̂ , V̂ ]]. (5.33)

We can evaluate this expression by making use of a test function f(R):

[T̂ , V̂ ] = T̂ V̂ f − V̂ T̂ f
= −λ(∇2(V f)− V∇2f)

= −λ(∇ · (V∇f + f∇]V )− V∇2f)

= −λ(2∇V · ∇f + f∇2V )

= −λ(2∇V · ∇+∇2V )f, (5.34)

and hence

[V̂ , [T̂ , V̂ ]]f = V̂ [T̂ , V̂ ]f − [T̂ , V̂ ]V̂ f

= −λ(2V∇V · ∇f + V f∇2V − 2∇V · ∇(V f)− V f∇2V )

= −λ(−2f |∇V |2)

= 2λ|∇V |2f. (5.35)
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Therefore, we have

VC(R) = V (R) +
λ

24
β2|∇RV (R)|2. (5.36)

We use the Chin propagator in our simulations because it is accurate enough for our purposes
without introducing too much complexity.

One important subtlety to consider in implementing the Chin propagator is how to
implement the hard sphere interaction potential V̂hs. Naively, one might choose to include
it in V̂ together with V̂ext, but this would require taking the gradient of the hard sphere
potential (2.18), which produces a singularity. Instead, we choose to group it with the kinetic
part of the Hamiltonian by replacing T̂ with T̂ + V̂hs and treating V̂ as strictly the external
potential in the above expressions. This allows us to trivially evaluate the commutator term
in V̂C (Eq. (5.33)), because V̂hs and V̂ext, as functions of position only, commute with each
other:

V̂C = V̂ext +
β2

48
[ ˆVext, [T̂ + V̂hs, V̂ext]]

= V̂ext +
β2

48
[V̂ext, [T̂ , V̂ext] + [V̂hs, V̂ext]]

= V̂ext +
β2

48
[V̂ext, [T̂ , V̂ext]]. (5.37)

With that, we can use the Chin decomposition to rewrite the propagator:

G(Ri, Ri+1, β) ≈ 〈Ri|e−
β
6~ V̂ e−

β
2~ (T̂+V̂hs)e−

2β
3~ V̂Ce−

β
2~ (T̂+V̂hs)e−

β
6~ V̂ |Ri+1〉

= e−
β
6~V (Ri) 〈Ri|e−

β
2~ (T̂+V̂hs)e−

2β
3~ V̂Ce−

β
2~ (T̂+V̂hs)|Ri+1〉 e−

β
6~V (Ri+1)

= e−
β
6~ (V (Ri)+4VC(Rj)+V (Ri+1))

∫
〈Ri|e−

β
2~ (T̂+V̂hs)|Rj〉 〈Rj|e−

β
2~ (T̂+V̂hs)|Ri+1〉 dRj

= e−
β
6~ (V (Ri)+4VC(Rj)+V (Ri+1))

∫
Ghs(Ri, Rj, β/2)Ghs(Rj, Ri+1, β/2) dRj,

(5.38)

where Ghs(Ri, Ri+1, β) is propagator for N hard spheres without an external potential. By
using this factorization, we have introduced a new configuration Rj between each pair of
original configurations Ri and Ri+1, so that there are now 4M + 1 configurations instead of
2M+1. Treating all of these on equal footing, we can rewrite the probability distribution (5.20)
as

π(X) = ψ∗T (R0)ψT (R4M)e
1
6~β(V (R0)−V (R4M ))

4M−1∏
i=0

f(Ri)Ghs(Ri, Ri+1, β/2), (5.39)

where

f(Ri) =

{
e−

1
3~βV (Ri) i = 0, 2, 4, . . .

e−
2
3~βV (Ri)− 1

36~3 λβ
3|∇V (Ri)|2 i = 1, 3, 5, . . .

. (5.40)
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We can simplify notation by redefining M as the total number of slices (keeping in mind that
this must equal an integer of the form 4n+ 1) and making the replacement β/2→ β. Then
we have

π(X) = ψ∗T (R0)ψT (RM)e
1
3~β(Vdw(R0)−Vdw(RM ))

M−1∏
i=0

f(Ri)Ghs(Ri, Ri+1, β), (5.41)

where

f(Ri) =

{
e−

2
3~βV (Ri) i = 0, 2, 4, . . .

e−
4
3~βV (Ri)− 2

9~3 λβ
3|∇V (Ri)|2 i = 1, 3, 5, . . .

. (5.42)

Hard sphere propagator

The final step in decomposing the propagator is to find an expression for Ghs(Ri, Ri+1, β).
Several methods have been proposed in the literature for approximating the two-body hard
sphere propagator, including the image approximation [94, 95]

Gimage(R,R
′, β) = Gfree(R,R

′, β)

(
1− e−

~(r−a)(r′−a)
2βλ

)
, (5.43)

and the propagator of Cao and Berne [90]

GCB(R,R′, β) = Gfree(R,R
′, β)

(
1−

(
1− (r − a)(r′ − a)

rr′

)
e−

~(r−a)(r′−a)(1+cos γ)
2βλ

)
, (5.44)

where r = |r1 − r2| is the separation between the atoms and γ is the angle between r1 and
r2. One important feature of a good hard sphere propagator is that it should equal the
propagator for free particles in the a→ 0 limit. The image approximation does not have this
behavior, so we will not consider it further.

It is also possible to express the hard sphere propagator exactly [96], although we had
to invent and implement a trick to make it practical for our system, as we will discuss
below. One critical consideration for choosing a propagator is that we want to be able to
use an imaginary time step that is as large as possible without spoiling the accuracy of the
propagator. We ultimately chose to implement the exact hard sphere propagator because it
allows for larger time steps than the Cao and Berne propagator (e.g., 10−2 ω−1

ho compared to
10−4 ω−1

ho for equivalent results).
We will build up to the final result of the hard sphere propagator for N atoms by describing

the propagators for two free particles and two hard spheres in particle and center-of-mass
coordinates, which are necessary for constructing the N -body hard sphere propagator.

Two free particles First, we consider the case of two free particles, where Ĥ = T̂ ,
R = {r1, r2}, and P = {p1,p2}. Recall that a momentum eigenstate in the position basis is
given by

〈r|p〉 =
1

(2π~)3/2
e
i
~p·r. (5.45)
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With that result, we can calculate Gfree(ri, ri+1, β) by inserting two complete sets of momen-
tum eigenstates:

Gfree(Ri, Ri+1, β) = 〈Ri|e−βT̂ /~|Ri+1〉

=

∫
〈Ri|P1〉 〈P1|e−βT̂ /~|P2〉 〈P2|Ri+1〉 dP1dP2

=

∫ (
1

(2π~)3
e
i
~P1·Ri

)(
δ(P1 − P2)e−

P2
2

2m~β

)(
1

(2π~)3
e−

i
~P2·Ri+1

)
dP1dP2

=
1

(2π~)6

∫
e−

P2
2

2m~β−
i
~P2·(Ri+1−Ri) dP2

=

(
~

4πβλ

)3

e−
~(Ri−Ri+1)

2

4βλ , (5.46)

where, again, λ = ~2/2m.

Two interacting particles in center of mass coordinates Now we consider the case
of two particles interacting with a potential Vint(r1 − r2). In order to write the propagator
for this case, it is helpful to define position and momentum operators in center of mass
coordinates:

r̂cm =
1

2
(r̂1 + r̂2) (5.47a)

r̂rel = r̂1 − r̂2 (5.47b)
p̂cm = p̂1 + p̂2 (5.47c)

p̂rel =
1

2
(p̂1 − p̂2). (5.47d)

One can readily confirm that this choice of operators leads to the following properties:

[r̂cm, p̂cm] = i~ (5.48a)
[r̂rel, p̂rel] = i~ (5.48b)
[r̂rel, p̂cm] = 0 (5.48c)
[r̂cm, p̂rel] = 0, (5.48d)

and

p̂cm = p̂1 + p̂2 = −i~
(
∂

∂r1

+
∂

∂r2

)
= −i~ ∂

∂rcm
(5.49a)

p̂rel =
1

2
(p̂1 − p̂2) = −i~1

2

(
∂

∂r1

− ∂

∂r2

)
= −i~ ∂

∂rrel
. (5.49b)
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Hence, the new operators (5.47) behave in the same way as the usual position and momentum
operators for individual particles. We are therefore justified in treating them as we would
individual particle operators in calculations, and we can use them to define new coordinates:

r̂cm |r1, r2〉 =
1

2
(r1 + r2) |r1, r2〉 = rcm |r1, r2〉 (5.50a)

r̂rel |r1, r2〉 = (r1 − r2) |r1, r2〉 = rrel |r1, r2〉 (5.50b)
p̂cm |p1,p2〉 = (p1 + p2) |p1,p2〉 = pcm |p1,p2〉 (5.50c)

p̂rel |p1,p2〉 =
1

2
(p1 − p2) |p1,p2〉 = prel |p1,p2〉 (5.50d)

With this coordinate transformation, we can rewrite the 2-body interacting Hamiltonian
in terms of a free particle of mass 2m with position rcm and momentum pcm and a (non-free)
particle of mass m/2 with position rrel and momentum prel:

Ĥ =
1

2m

(
p̂2

1 + p̂2
2

)
+ Vint(r̂1 − r̂2)

=
1

4m
p̂2
cm +

(
1

m
p̂2
rel + Vint(r̂rel)

)
= Ĥcm + Ĥrel. (5.51)

Because of the commutation relations (5.48), we know that

eĤ = eĤcm+Ĥrel = eĤcmeĤrel . (5.52)

This allows us to express the propagator in a nice form:

Gint(R,R
′, β) = 〈R|e−βĤ/~|R′〉

= 〈rcm, rrel|e−βĤcm/~e−βĤrel/~|r′cm, r′rel〉

= 〈rcm|e−βĤcm/~|r′cm〉 〈rrel|e−βĤrel/~|r′rel〉
= G2m

free(rcm, r
′
cm, β)G

m/2
int (rrel, r

′
rel, β)

=

(
~

2πβλ

) 3
2

e−
~(rcm−r′cm)2

2βλ G
m/2
int (rrel, r

′
rel, β), (5.53)

where the superscript on G indicates the effective mass for the propagator. Because the
center-of-mass part of the propagator is known, all we need to finish this computation is the
relative-motion part of the propagator.
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Two free particles in center of mass coordinates We will return briefly to the free
particle case to compute it in center of mass coordinates. One method of doing this is obvious:

Gfree(R,R
′, β) =

(
~

2πβλ

) 3
2

e−
~(rcm−r′cm)2

2βλ G
m/2
free(rrel, r

′
rel, β)

=

(
~

2πβλ

) 3
2

e−
~(rcm−r′cm)2

2βλ

(
~

8πβλ

) 3
2

e−
~(rrel−r′rel)

2

8βλ

=

(
~

4πβλ

)3

e−
~

4βλ(2(rcm−r′cm)2+ 1
2

(rrel−r′rel)
2)

=

(
~

4πβλ

)3

e−
~((r1−r′1)

2+(r2−r′2)
2)

4βλ , (5.54)

which agrees with Eq. (5.46).
It is also possible, and useful, to evaluate the relative-motion part of the free propagator

in spherical coordinates. To do so, we define k = prel/~ so that the integration measure dprel
becomes ~3k2 sin θdk dθ dφ. We also make use of the identity

e−ik·r =
∞∑
l=0

(−i)l(2l + 1)jl(kr)Pl(cosα), (5.55)

where Pl(x) is a Legendre polynomial, jl(x) is the spherical Bessel function of the first kind,
and α is the angle between k and r. We find

G
m/2
free(rrel, r

′
rel, β) =

1

(2π~)3

∫
e−β

p2
rel
m~ e−i

prel
~ ·(rrel−r

′
rel) dprel

=
1

(2π)3

∫
e−β

~k2
m e−ik·(rrel−r

′
rel) k2 sin θ dk dθ dφ

=
1

(2π)3

∫
e−β

~k2
m

∞∑
l=0

(−i)l(2l + 1)jl(krrel)Pl(cosα)

×
∞∑
n=0

in(2n+ 1)jn(kr′rel)Pn(cosα′) k2 sin θ dk dθ dφ

=
1

(2π)3

∞∑
l=0

∞∑
n=0

(−1)l(i)l+n(2l + 1)(2n+ 1)

×
∫ ∞

0

k2e−β
~2k2
m jl(krrel)jn(kr′rel) dk

×
∫ π

0

∫ 2π

0

sin θPl(cosα)Pn(cosα′) dφ dθ. (5.56)

The angular integral may be evaluated by rotating the coordinate system such that rrel lies
in the positive z-direction and r′rel lies in the xz-plane with an angle γ between them. In that
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Figure 5.1: The geometry of the vectors necessary to compute the angular integral in the
expression for Gm/2

free(rrel, r
′
rel, β). For convenience, we choose rrel to lie along the z-axis and

r′rel to lie in the xz-plane.

case, rrel = rrelẑ, r′rel = r′rel(sin γ x̂+ cos γ ẑ), and k = k(sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ);
see Figure 5.1. We can then compute

cosα =
rrel · k
rrel k

= cos θ (5.57a)

cosα′ =
r′rel · k
r′rel k

= sin γ sin θ cosφ+ cos γ cos θ, (5.57b)

and the angular integral becomes∫ π

0

∫ 2π

0

sin θPl(cos θ)Pn(sin γ sin θ cosφ+ cos γ cos θ) dφ dθ =
4π

2l + 1
Pl(cos γ)δln. (5.58)

Upon substituting this result into Gm/2
free, we find

G
m/2
free(rrel, r

′
rel, β) =

1

2π2

∞∑
l=0

Pl(cos γ)(2l + 1)

(∫ ∞
0

k2e−β
~k2
m jl(krrel)jl(kr

′
rel) dk

)
. (5.59)

This expression will become useful when we treat the case of two hard spheres.

Two hard spheres in center of mass coordinates We now move on to the case of
two hard spheres. The exact propagator for two hard spheres can be written in spherical
coordinates in form very similar to Gm/2

free(rrel, r
′
rel, β) [96]:

G
m/2
hs (rrel, r

′
rel, β) =

1

2π2

∞∑
l=0

Pl(cos γ)(2l + 1)

(∫ ∞
0

k2e−β
~k2
m
Rl(rrel, k)Rl(r

′
rel, k)

Dl(k)
dk

)
,

(5.60)
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where

Rl(r, k) = jl(kr)yl(ka)− yl(kr)jl(ka) (5.61a)
Dl(k) = j2

l (ka) + y2
l (ka), (5.61b)

a is the hard sphere diameter, and yl(x) is the spherical Bessel function of the second kind.
Unfortunately, this expression cannot be rewritten in a convenient analytical form. To use it,
we must terminate the sum at some appropriate lmax and tabulate it as a function of rirel,
ri+1
rel , and γ. We’d like for lmax to be as small as possible.

One interesting observation about Gm/2
hs (rrel, r

′
rel, β) is that it has the same form as

G
m/2
free(rrel, r

′
rel, β), apart from the form of the argument of the integral; in fact, they become

equal in the a→ 0 limit. This observation is useful because the difference between Gm/2
hs and

G
m/2
free converges with respect to lmax much faster than Gm/2

hs alone. To see that, we make the
following transformation:

Gm
hs(R,R

′, β) = Gm
free(R,R

′, β)
Gm
hs(R,R

′, β)

Gm
free(R,R

′, β)

= Gm
free(R,R

′, β)
G2m
free(rcm, r

′
cm, β)G

m/2
hs (rrel, r

′
rel, β)

G2m
free(rcm, r

′
cm, β)G

m/2
free(rrel, r

′
rel, β)

= Gm
free(R,R

′, β)
G
m/2
hs (rrel, r

′
rel, β)

G
m/2
free(rrel, r

′
rel, β)

= Gm
free(R,R

′, β)
G
m/2
free(rrel, r

′
rel, β)−Gm/2

free(rrel, r
′
rel, β) +G

m/2
hs (rrel, r

′
rel, β)

G
m/2
free(rrel, r

′
rel, β)

= Gm
free(R,R

′, β)

(
1−

G
m/2
free(rrel, r

′
rel, β)−Gm/2

hs (rrel, r
′
rel, β)

G
m/2
free(rrel, r

′
rel, β)

)
= Gm

free(R,R
′, β) G̃

m/2
hs (rrel, r

′
rel, β). (5.62)

The new form of the hard sphere propagator, G̃m/2
hs , can be written as

G̃
m/2
hs (rrel, r

′
rel, β) = 1−

G
m/2
free(rrel, r

′
rel, β)−Gm/2

hs (rrel, r
′
rel, β)

G
m/2
free(rrel, r

′
rel, β)

= 1− 4

π1/2

(
2βλ

~

)3/2

e
~(rrel−r′rel)

2

8βλ

∞∑
l=0

Pl(cos γ)(2l + 1)

×
∫ ∞

0

k2e−
2βλk2

~ Al(k, rrel, r
′
rel) dk, (5.63)

where
Al(k, rrel, r

′
rel) = jl(krrel)jl(kr

′
rel)−

Rl(rrel, k)Rl(r
′
rel, k)

Dl(k)
. (5.64)
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Figure 5.2: The ratio of the hard sphere propagator to the free propagator for rijk = ri+1
jk ,

γ = 0, and a2 = 2βλ/~. The blue curves are plots of Gm/2
hs /G

m/2
free computed as in Eq. (5.60)

for various lmax; the lowest blue curve has lmax = 0 and the highest lmax = 8. The red
curves are plots of G̃m/2

hs computed as in Eq. (5.63) for various lmax; the highest red curve
has lmax = 0 and the lowest lmax = 8 (although the curves from lmax = 2 through lmax = 8

are visually indistinguishable). The rapid convergence of G̃m/2
hs compared with Gm/2

hs /G
m/2
free is

a general feature of these functions.

Figure 5.2 compares G̃m/2
hs with Gm/2

hs /G
m/2
free. As we stated, G̃

m/2
hs converges significantly faster.

In fact, by using this form we can terminate the sum at an lmax that is about 2 to 10 times
smaller (depending on the value of a) than would be necessary to achieve the same precision
using Eq. (5.60).

N Hard Spheres We saw that for two hard spheres, we can write the propagator as

Gm
hs(R,R

′, β) = Gm
free(R,R

′, β) G̃
m/2
hs (rrel, r

′
rel, β). (5.65)

In order to generalize this to N hard spheres, we use the pair product approximation [94]:

Gm
hs(Ri, Ri+1, β) = Gm

free(Ri, Ri+1, β)
N∏
j<k

G̃
m/2
hs (rijk, r

i+1
jk , γ, β). (5.66)

Conceptually, in this approximation the propagator for N hard spheres is given by the
propagator for N free particles modified by pairwise hard sphere interactions between each
pair of atoms. Hence, by using this approximation we are assuming that three- and more-body
interactions are negligible, which is consistent with assumption we made when defining the
interactions in Section 2.2.

By combining Eqs. (5.41) and (5.66), we have completely defined the propagator, and
therefore the probability distribution π(X), for the system.



CHAPTER 5. QMC: THE PATH INTEGRAL GROUND STATE METHOD 99

Figure 5.3: The region, in gray, for which G̃
m/2
hs (r, r′, γ, β) is tabulated, as a function of

qmax, in both the plane defined by r and r′ and the plane defined by q = (r + r′)/2 and
q′ = (r − r′)/2.

Tabulating the propagator Because the hard sphere propagator cannot be solved ana-
lytically, in order to use it we need to tabulate it as a function of r, r′, and γ. In practice, we
tabulated it as a function of q = (r + r′)/2, q′ = (r − r′)/2, and γ. We let γ range from 0 to
π in increments of π/24, q′ range between 0 and q − 1 in increments of 0.05 a, and q range
between a and qmax in increments of 0.05 a. The choice of qmax varied significantly based on
the value of the dimensionless parameter α = 2βλ/~a2, which controlled the stability of the
integrals we were calculating. For the smallest α we used (α = 0.25), we had qmax = 3 a,
while for the largest α (α = 6.25 × 108), we had qmax = 15 a. See Figure 5.3 for a visual
representation of these coordinates.

5.3.3 Update methods

There are a few general details related to the implementation of update methods that we will
address before describing each method and its effectiveness in detail.

First, it is often useful to use update methods such that the probability of proposing
a move from Xi to Xj is equal to the probability of proposing the reverse move: P(Xi →
Xj) = P(Xj → Xi). For example, for a single-particle update, P(Xi → Xj) = e−(ri−rj)2

satisfies this condition. By choosing an update method such that this condition is satisfied,
we simplify the expression for the acceptance probability (5.19). This will be the case for the
update methods we use.
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Ergodicity As we discussed previously, any update method we choose must be ergodic,
i.e., it must be able to generate any allowed configuration of the system. If this is not the
case, then there is no way for the Metropolis algorithm to reproduce π(X) correctly for any
inaccessible configurations. However, an update method can be ergodic in principle but
still cause problems with reproducing π(X) if the probabilities of proposing transitions to
certain configurations are very small (but nonzero!) relative to the probabilities of proposing
transitions to other configurations. In that situation, the simulation will sample certain
configurations very infrequently, necessitating long simulation times to correctly reproduce
π(X). Thus, for all practical purposes, such a simulation is not ergodic.

For simulations with a double well trapping potential, the key difficulty with achieving
ergodicity has to do with the motion of particles between the two wells, which we can
intuitively understand as follows. In general, paths which are entirely located in one well
are more probable than paths that cross the barrier because of the extra potential energy
associated with the parts of the crossing paths that are in the barrier region. The larger
this difference in probability, the less likely it will be that paths that start in one well will
move to the other over the course of the simulation; instead, they get stuck on one side. This
problem becomes worse the larger the barrier, so we have a much easier time simulating the
system for L = aho and 2 aho than for L = 3 aho.

Surprisingly, this problem is also exacerbated for small N and small a, which one can
understand as follows. In the context of the simulation, N is the number of paths and a
is the closest distance that different paths at the same time slice can approach each other.
When both of these are small, paths can “settle down” into the bottoms of the wells where
the potential energy is low. However, when N and a are large, the paths are forced to spread
out into regions where the potential is larger. This makes it easier for them to transition
through the barrier because the “probability penalty” incurred to do so is not as great. This
leads to the counterintuitive result that it is easier to achieve convergence for high barrier
simulations with strong interactions and more particles

This ergodicity problem impacts the computation of S more severely than other diagonal
observables, such as the energy or density. Since S is a function of (nl − nr)2, which only
changes value when the center of a path crosses the barrier at z = 0, reduced ergodicity with
respect to particle motion across the barrier leads to long autocorrelation times for S. Hence,
one must wait a long time before the simulation generates enough independent values of
(nl − nr)2 to properly compute S.

Sampling issues also arise when computing the OBDM. In that case, these are mostly due
to the fact that we sampled the OBDM on a grid. If the mesh is too coarse (too few grid
points), then the basis is too small to get produce accurate natural orbitals and occupation
numbers, but if it is too fine (too many grid points), then it will take the simulation too long
to get good enough statistics on each point. Hence, one needs to strike a balance between
these two extremes. We chose to generate an OBDM that is 51× 51 entries.
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Sampling efficiency One way that an update process could work is by producing new
configurations that are completely independent of the proceeding configurations; this is known
as direct sampling. It is possible to use direct sampling with the double well BEC system
by randomly generating 3NM real numbers for each new configuration. This would have
to be done in a finite box, but since the wavefunction is effectively zero far enough away
from the double well, there is always going to be some box that one can define such that the
probability of accepting a move outside of that box is as close to zero as one likes. Since
those moves would have been rejected anyway, there is no need to allow the possibility of
explicitly generating them. However, this is often a bad choice in practice. If the system is
such that a large fraction of parameter space has π(X) ≈ 0 inside the box, the Metropolis
algorithm would spend most of its time rejecting moves generated by direct sampling, which
is inefficient.

Instead, one can use Markov chain sampling [97], in which a new configuration is generated
based on the old configuration. For example, one simple way to do this is to shift the position
of a randomly selected atom in a random direction by an amount distributed according
to a Gaussian random variable. There are of course many other ways to generate new
configurations. Later in this section, we will discuss the update methods we use, which all
employ Markov chain sampling.

Generally, there are parameters in the Markov chain algorithm that one can adjust to
alter the efficiency of the simulation; for the proceeding example, the width of the Gaussian
distribution is one such parameter. The efficiency of an update method is related to the rate
at which the simulation decorrelates from the random initial configuration in which it starts.
The quicker this decorrelation happens (i.e., the quicker the simulation “forgets” its arbitrary
starting configuration), the more efficient the algorithm. In practice, this is not a useful way
of deciding whether an update method is efficient because it requires one to actually run the
simulation multiple times with different update method parameters to decide which set of
parameters is the best.

Instead, a useful rule of thumb is to shift the parameters so that the acceptance rate of
the Metropolis algorithm is about 50%. This ensures that the proposed updates are not too
close to the original configurations, in which case the simulation would sweep out parameter
space too slowly, or too far from the original configuration, in which case we would run the
risk of reproducing the problem associated with direct sampling. The signature of the former
situation is an acceptance rate close to 1, while the signature of the latter is an acceptance
rate close to 0; both situations imply that a large number of moves are being “wasted.” Hence,
tuning the acceptance rate to 50% is an easy and simple way to improve the efficiency of an
update method.

Correlations Any update method that uses a Markov chain algorithm necessarily results
in configurations that are correlated with each other. This leads to several issues related to
the choice of initial state and the computation of error bars.

The Metropolis algorithm must be initialized with some starting configuration; we chose
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Figure 5.4: The standard deviation σn of the number distribution of a double well BEC system
with N = 64 atoms and scattering length a = 0.05 as a function of Metropolis algorithm
iteration step for a Monte Carlo integration with M = 100 time slices. Notice that it takes
about 1000 iterations before the value of σn decorrelates from the initial randomly chosen
configuration. The horizontal line is at σn = 4, which is the value of σn in the noninteracting
limit.

to generate a random starting configuration in a box of fixed size. Because states in a
Markov chain are not independent of their neighbors, there is some number of iterations of
the Metropolis algorithm necessary to decorrelate the set of accepted configurations from the
choice of starting configuration. In general, it is not possible to know in advance how many
iterations are necessary to achieve this decorrelation. In practice, we can plot the value of
the observable(s) of interest as a function of Metropolis iteration step (see Figure 5.4 for an
example) and throw out the data that is obviously still correlated.

Even after one has thrown out this initial data, there are still correlations present in the
remaining data. The number of iterations of the Metropolis algorithm required to generate a
configuration decorrelated from some initial configuration is known as the correlation length;
there is generally no simple way to know the value of the correlation length in advance of
computing a Monte Carlo integral. These correlations impact the computation of error bars
by causing the standard error to underestimate the true statistical error in the data. One can
solve this problem by estimating the error bars using the binning analysis described in [98].
For a given bin size B, one averages the first B data points, the next B data points, and
so on, to produce dk/Be new data points (where k is the number of original data points,
and the “remainder” data points are averaged into a point even if there are not B of them).
Then, one plots the standard error of the new data points as a function of B. Once the bin
size becomes larger than the correlation length, the plot should asymptote to the true value
of the error, although the larger B gets, the fewer data points there are and therefore the
larger the variance in the computed error. See Figure 5.5 for an example binning analysis
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Figure 5.5: Error estimate for the data depicted in Figure 5.4 using the binning analysis
of [98]. The value at which the error plateaus is the true error, and the bin size at which
this happens is an estimate of the correlation length for the system. The “decorrelated data”
ignores the first 1000 iterations worth of data in Figure 5.4. Unsurprisingly, the estimated
error is larger when one includes the data that has not yet decorrelated from the initial state.
Notice that for very large bin sizes, the variance in the error estimate grows; this happens
because when the data is averaged into large bins, dk/Be becomes small.

that corresponds to the data in Figure 5.4.

Brownian Bridge Moves

The main “workhorse” update method we use is the Brownian bridge move, which is a specific
realization of the more general Lévy construction [99, 100]. In the Brownian bridge move, a
portion of the path of a single particle is updated. The particle is chosen randomly, as is the
section of its path that is updated; the length of this section is a fixed parameter K, defined
such that the section consists of k+ 1 time slices including the endpoints. As discussed above,
we choose so as to achieve an acceptance rate of approximately 50% for efficiency purposes.

The move proceeds as follows. The endpoints of the section to be updated are chosen and
held fixed; call these r0 and rK . Next, the coordinate of the particle at the first time slice, r1,
is replaced with one drawn from a certain probability distribution that we will describe below.
This coordinate becomes the new left endpoint for a section of length K − 1 that runs from
r1 to rK . The coordinate of the particle at the second time slice, r2, is replaced with one
drawn using a probability distribution with the same form as the one used for determining r1,
but with the updated left endpoint. This process continues until the entire section of path is
reconstructed.

So what is the appropriate probability distribution to use? Suppose that we wanted to
insert a new coordinate rJ at an arbitrary imaginary time between r0 and rK , such that τ1
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is the amount of imaginary time separating r0 and rJ and τ2 is the amount of imaginary
time separating rJ and rK . The new coordinate can be drawn from a probability distribution
P (rJ) based on the free particle propagator:

P (rJ) ∝ e
− ~

4λ

(
(r0−rJ )2

τ1
+

(rJ−rK )2

τ2

)

= e
− ~

4λ

(
(rJ−r∗)2

τ∗ +
r20
τ1

+
r2τ
τ2

)

∝ e
− ~

4λ

(
(rJ−r∗)2

τ∗

)
, (5.67)

where

r∗ =
τ1r0 + τ2rK
τ1 + τ2

(5.68a)

τ ∗ =
τ1τ2

τ1 + τ2

. (5.68b)

This is a Gaussian probability distribution centered at r∗ with a width set by τ ∗. By choosing
r0, rK , τ1, and τ2 appropriately, one can use this distribution to implement Brownian bridge
moves.

In general, the Brownian bridge move is an efficient way of sampling new paths, although
it is susceptible to the ergodicity problem described above if the barrier is too strong and
enough of the new path ends up in the barrier region. For the vast majority of our simulations,
it was the only update method we used.

Swap Moves

One potential way to address the ergodicity issue is to implement an additional type of move
that explicitly transfers an atom from one side of the double well to the other [101]. In
our implementation of this swap move, the z-coordinate is negated for the entire path of a
random particle. If this leads to an overlap between the swapped path and a second path
(i.e., it results in two atoms at the same time slice with a separation of less than a), then the
second path is also swapped. This “cascade” continues until no overlaps remain.

Naively, one would think that this would be a good way to generate moves that change
the difference in the number of atoms between the two sides of the double well. Unfortunately,
swap moves did not work as well as intended. As the simulation progresses, Brownian bridge
moves tend to nudge the atom paths into tight clusters near the well minima, as noted above.
Once the system is in that sort of state, a swap move has a high probability of leading to a
cascade that swaps every particle, which is the same as not swapping anything. This effect is
worse for longer paths and larger N . Because of this, the swap move was mostly ineffective in
practice for our double well simulations. We did not end up using it for our production runs.
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Potential Moves

Our potential moves were inspired by the parallel tempering technique [102]. In parallel
tempering, one runs multiple copies of a simulation at different temperatures simultaneously,
and exchanges configurations between two different simulations based on the Metropolis
criterion. This allows a simulation at a given temperature to sample a wider variety of
configurations, potentially avoiding an ergodicity problem.

In our potential moves, we run only one simulation, but we implement a move that
changes the shape of the external potential, specifically by changing L from among a set of
pre-defined values. Given the current value of L, the potential move attempts to change L to
the next highest or lowest value in the pre-defined set and uses the Metropolis criterion to
accept or reject the move. The motivation here is to allow for a way to more easily change
(nl − nr)2 for a high-barrier potential than would be possible with only Brownian bridge
moves by lowering the potential and then raising it again.

One challenge with this method is that certain potentials are more probable (i.e., have
higher average values of π(X), with the average taken over all configurations) than others,
so a simulation with potential moves as described would eventually end up only sampling
the most probable potential. To avoid this problem, we introduce a set of weights, one
per potential, and we multiply π(x) by the appropriate one before applying the Metropolis
algorithm. Because there is a unique weight per potential, all of the accepted configurations
for a given potential will be correctly distributed according to the π(X) for that potential,
even though the configurations from different potentials will not appear in the “correct”,
unweighted ratios. Indeed, this is the point of the weights: we choose them so that the average
probability of transitioning from one potential to another is the same as the probability of
the reverse, which ensures that all of the potentials will be visited with equal probability in
the long run, and that we will therefore get results for all of them.

One can choose these weights using a version of the Wang and Landau algorithm [103].
Let’s imagine that we have only two potentials, A and B. Each potential has a probability
distribution for the possible configurations of the system, πA(X) and πB(X). The total
probability of transitioning from potential A to potential B can be expressed as an integral
of the Metropolis acceptance probability over all possible configurations of the system:

PAB =

∫
min

(
1, πB(X)

πA(X)

)
dX∫

dX
. (5.69)

Instead of an integral over configurations, one can rewrite this quantity in terms of a probability
distribution fAB(π), which is defined as the probability of finding a value of π = πB/πA over
all possible configurations of the system. Then,

PAB =

∫∞
0
fAB(π) min (1, π) dπ∫∞

0
fAB(π) dπ

. (5.70)

Now suppose we introduce a weight w and multiply all values of πB(X) by it. This changes
the probability distribution fAB(π) to gAB(π) = fAB(π/w), and therefore the total transition
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probability becomes

PAB(w) =

∫∞
0
gAB(π) min (1, π) dπ∫∞

0
gAB(π) dπ

=

∫∞
0
fAB(π/w) min (1, π) dπ∫∞

0
fAB(π/w) dπ

=

∫∞
0
fAB(π) min (1, wπ) dπ∫∞

0
fAB(π) dπ

. (5.71)

Notice that PAB(0) = 0 and PAB(∞) = 1. A similar argument produces an expression for
the total transition probability in the other direction:

PBA(w) =

∫∞
0
fBA(π) min (1, π/w) dπ∫∞

0
fBA(π) dπ

, (5.72)

for which PBA(0) = 1 and PBA(∞) = 0. The weight that one wants is the one such that
PAB(w) = PBA(w).

To compute these weights in practice, we set up two simulations for each pair of adjacent
potentials (i.e., potentials between which we allowed transitions). In one simulation, we used
potential and Brownian bridge moves, and we set the weight of potential B to zero, so that
the simulation would fail to transition every time it tried to go from A to B. We allowed it to
attempt to transition 10,000 times and recorded the values of πB(X)/πA(X) it generated; the
Brownian bridge moves between transition attempts ensured that a variety of configurations
X were sampled. We used this list of values to construct a discrete version of fAB(π). In the
other simulation, we did the same thing except for setting the weight of potential A to zero;
this allowed us to construct a discrete version of fBA(π). Using this data, we computed the
weight that satisfied PAB(w) = PBA(w), and we did this for each pair of potentials.

In practice, potential moves often work quite well once the correct weights are chosen.
However, there is one significant caveat: while weights can be chosen to equalize the back-
and-forth transition probabilities between two potentials, the actual value of that probability
can be quite small. If that is the case, then even though in principle all potentials will be
visited with equal frequency, that will only happen in practice in the limit of a very long
simulation. This situation arises for high barrier potentials, and worsens for larger N and
longer paths; see Table 5.1 for an example. This means that these potential moves are only
really useful for sampling the lower barrier potentials, but those potentials don’t have the
sampling problem that the potential moves were designed to solve. Hence, the potential
moves also ended up not being particularly useful.

Fixed Number Sampling

Another method that we developed to try to overcome the number configuration sampling
problem was inspired by the thought that one way to avoid the problem is to run simulations
where the number of particles on each side of the barrier is fixed.
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Number of slices
N 100 200 800

8 4.8× 10−1 3.9× 10−1 6.1× 10−2

16 3.0× 10−1 1.5× 10−1 1.8× 10−2

32 1.2× 10−1 4.6× 10−2 1.0× 10−5

64 4.8× 10−2 1.1× 10−2 3.1× 10−12

Table 5.1: Probability of transitioning between L = 2.875 and 3 for a = 0.1 for various
numbers of particles N and path lengths in the potential move. Notice that the probability
decreases mildly with increasing particle number and decreases significantly with increasing
number of time slices. This makes the potential moves very impractical for potentials with
strong double well barriers, because they require long paths to converge to the ground state.
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Figure 5.6: For simulations involving potential moves, the fraction of the total number of
potentials (i.e., values of L) sampled during the simulation, as a function of L for various
particle number N . Each simulation attempted about 107 potential moves. Notice that the
fraction falls off significantly around the high barrier regime at L = 3 aho.
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Recall that, for a given operator Ô, a PIGS simulation calculates

〈Ô〉 =

∫
O(X)π(X) dX∫
π(X) dX

, (5.73)

where we have explicitly included the normalization in the denominator that we usually
ignore; the reason for this will become apparent soon. Now, let’s imagine that instead of
running one simulation, we run N + 1 simulations, each with a different, fixed number of
particles on the left side of the double well (in fact, we need only run (N + 2)/2 simulations
because the symmetry of the double well means that a simulation with n particles on the left
is equivalent to one with N − n particles on the left, so we can reuse the results of about half
of the simulations). We fix the number of particles by rejecting any proposed update that
changes the number of center slices on the left side of the barrier from the predetermined
value for that simulation. This effectively changes π(X); each fixed-number simulation has a
new configuration probability distribution πi(X) given by

πi(X) =

{
π(X) num(z < 0) = i
0 otherwise

, (5.74)

for i = {0, 1, 2, . . . , N}, where num(z < 0) is the number of values z1, z2, . . . , zN that are less
than zero. With this definition,

π(X) =
N∑
i=0

πi(X). (5.75)

Additionally, we define 〈Ô〉i such that

〈Ô〉i =

∫
O(X)πi(X) dX∫
πi(X) dX

. (5.76)

This allows us to express 〈Ô〉, the quantity we are interested in calculating, in terms of the
quantities 〈Ô〉i that we can calculate with the fixed-number simulations:

〈Ô〉 =

∫
O(X)π(X) dX∫
π(X) dX

=

∑
i

∫
O(X)πi(X) dX∑
i

∫
πi(X) dX

=

∑
i 〈O〉i

∫
πi(X) dX∑

i

∫
πi(X) dX

=

∑
i 〈O〉i Pi∑

i Pi
, (5.77)

where Pi =
∫
πi(X) dX. So, in addition to calculating 〈O〉i for each fixed-number simulation,

we also need to calculate Pi. We can do so by considering the following observable:

Qi(X) =

{ 1
πi(X)

πi(X) 6= 0

0 πi(X) = 0
(5.78)
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The expectation value of this observable, 〈Qi〉, may be calculated by averaging over the
reciprocal of the probabilities of the accepted configurations since no configurations with
πi(X) = 0 can ever be accepted. Formally, we can write 〈Qi〉 as

〈Qi〉 =

∫
Qi(X)πi(X) dX∫

πi(X) dX

=

∫
πi(X)6=0

1
πi(X)

πi(X) dX +
∫
πi(X)=0

0 πi(X) dX

Pi

=

∫
πi(X)6=0

dX

Pi

=
Vi
Pi
, (5.79)

where Vi =
∫
πi(X)6=0

dX is the volume of the space for which πi(X) 6= 0. In principle, this
volume can be expressed as a fraction fi of the total (infinite) volume

∫
dX. All together, we

have

〈Ô〉 =

∑
i 〈O〉i Pi∑

i Pi

=

∫
dX
∑

i fi 〈O〉i / 〈Q〉i∫
dX
∑

i fi/ 〈Q〉i

=

∑
i fi 〈O〉i / 〈Q〉i∑

i fi/ 〈Q〉i
(5.80)

Unfortunately, we found that it is not practical to use this method to compute 〈Ô〉 for this
system. The main problem is that 〈Q〉i is a numerically unstable quantity to calculate. Over
the course of a simulation, πi(X) for accepted configurations ranges between 0 and 1; most
values will be close to 1, but there will occasionally be improbable but accepted configurations
with very small πi(X). These improbable configurations will disrupt the computation of
〈Q〉i, because they will introduce occasional values into the average that are many orders of
magnitude greater than the rest. The average will therefore be dominated by these infrequent
outliers, making it impossible in practice to get a well-converged value for the average.

5.4 Summary
In this chapter, we described in detain our implementation of the path integral ground state
Monte Carlo method. Much of this discussion was general background on PIGS. Our main
novel contributions were

1. the factorization of the external potential from the propagator by grouping the kinetic
and hard sphere parts of the Hamiltonian in the Chin decomposition,
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2. the use of the difference between the free and exact hard sphere propagators, rather
than the exact hard sphere propagator alone, increasing the rate of convergence of the
propagator as higher l terms are added, and

3. the development and implementation of update methods, like the swap and potential
moves, which unfortunately were not of much help in overcoming the sampling problems
we faced.

As suggested by the third item on this list, one significant source of difficulty in imple-
menting these simulations is achieving ergodicity with respect to moving atoms across the
double well barrier, which is increasingly difficult the stronger barrier. Ultimately, none
of the solutions we attempted to mitigate this problem were more effective than simply
running the simulations with Brownian bridge moves for long enough to achieve convergence.
This restricted the barrier strength and number of particles that we could simulate to those
reported in Chapter 6.
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Chapter 6

Quantum Monte Carlo Results:
Squeezing & Fragmentation

In this chapter, we present the squeezing and fragmentation results of our quantum Monte
Carlo simulations, which use the path integral ground state method we described in the
last chapter. We will use the predictions of the two- and eight-mode models, discussed in
Chapters 3 and 4, to help us understand the new double well BEC physics revealed by our
results.

6.1 Simulation Parameters
Before describing and interpreting our Monte Carlo results, we will review the physical and
computational parameters associated with our simulations and describe the rationale for the
choices we made in setting them.

First, we set the computer hardware context in which these choices were made. Our
simulations were run on a variety of supercomputers maintained and operated by Lawrence
Livermore National Laboratory. Each supercomputer consists of several thousand CPUs with
speeds of between 2.4 and 2.8 GHz per processor. We implemented simple parallelization
in our PIGS code so that we could run a simulation on multiple processors simultaneously;
typically, we parallelized our simulations across 64 or 72 processors. In general, a run with
particular values for N , a, and L required between 100 and 1000 processor-days of continuous
running to converge, with larger times corresponding to simulations with stronger barriers.
Because there are many users requesting Livermore computing resources simultaneously, our
runs were never continuous. “Dead time” due to other users’ jobs running instead of ours
could increase the effective time-to-convergence by anywhere between 25 and 50 percent,
depending on the demand on the machine. Hence, these hardware constraints played a major
role in determining what values of N and L were feasible for us to compute.
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6.1.1 Physical Parameters

There are six physical parameters that can be altered in the double well Hamiltonian (2.33):
the number of atoms N ; the scattering length a; the atomic mass m; and the double well
geometry parameters α, L, and ωho. Because we express all of our results in terms of the
energy scale Eho = ~ωho and the length scale aho =

√
~/mωho, there is no need to explicitly

consider varying m or ωho. However, we would like to understand how the ground state
properties of the double well system vary as a function of the other four parameters, and in
principle, we would like to study them in as large a range as possible.

Atom number For the number of atoms N , we choose to simulate systems with N = 8,
16, 32, and 64. The main constraint on these values is imposed by the PIGS simulations:
more atoms in the simulation leads to larger dimensionality of the integral that needs to be
computed and therefore longer simulation times. Due to hardware constraints, we could not
reasonably go beyond N = 64, even though real physical systems typically have orders of
magnitude more atoms than this. Additionally, we chose to simulate smaller values of N
for two reasons. First, by simulating several values of N , we can potentially extrapolate the
results we have to predict behavior for larger N . Second, as we discussed in Section 4.1.3, it
is not computationally feasible to use the eight-mode model to study ground state properties
for N greater than about 10; hence, we simulate a system with N = 8 in order to be able to
use the predictions of the eight-mode model in our analysis.

Double well shape The strength of the double well barrier is extremely important in
determining the ground state properties of the system, as we can already see based on
multimode predictions of squeezing and fragmentation from Sections 3.4 and 4.2. Hence, we
want to simulate systems under a wide variety of barrier strengths. We can characterize the
barrier strength using parameters of the two-mode model, which are tabulated in Table 3.1.
In particular, the two-mode Hamiltonian for a single atom is

Ĥ = ∆Î − δ

2
(â†l âr + â†râl). (6.1)

In the limit of a strong barrier, the off-diagonal (tunneling) terms become much smaller than
the diagonal terms while for a weak barrier they are comparable. Hence, we can use the
dimensionless ratio ξ = δ/2∆ as a proxy for barrier strength.

The double well barrier strength is controlled by two parameters, α and L, so there
are a wide variety of geometries we could choose to study. However, recall that the eight-
mode model requires us to study geometries that are in the spherical potential regime as
defined in Section 4.1.1. Additionally, the stronger the barrier becomes, the more difficult
it is to overcome all of the sampling issues we discussed in Section 5.3.3 and generate
reliable, converged results. Based on these considerations, we choose three geometries with
α = 4/81 a−2

ho and L = aho, 2 aho, and 3 aho. These are all in the spherical potential regime
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(see Figure 4.4), and correspond to barriers of increasing strength (ξ = 1.8× 10−1, 7.1× 10−2,
and 9.2× 10−4, respectively).

Scattering length One of the main motivations of conducting quantum Monte Carlo
simulations of the double well BEC system in the first place is to study the system outside
of the weakly-interacting regime in which mean-field theoretical work has thus far focused.
Thus, we want to run simulations over as wide a range of scattering length a as possible, in
particular for large a.

This brings up the question of what “large a” means. There are at least three ways to
think about what constitutes large a, two of which we have alluded two already in the context
of the approximations that go into the construction of the double well Hamiltonian restricted
to two-body interactions, Eqs. (2.33) and (2.34).

1. Two-body interaction approximation The double well Hamiltonian that we
derived for use in our multimode models assumes that all interactions are two-body. Recall
that in second quantized form, the two-body interaction term of the Hamiltonian is given by

Ĥ2 =
2π~2a

m

∞∑
i,j,k,l=1

â†i â
†
j âkâl

∫
φ∗i (r)φ∗j(r)φk(r)φl(r) dr. (6.2)

For a generic N -body double well state |ψ〉, we can write the expectation value of this
Hamiltonian as

〈ψ|Ĥ2|ψ〉 =
2π~2

m

∞∑
i,j,k,l=1

〈ψ|â†i â
†
j âkâl|ψ〉 a

∫
φ∗i (r)φ∗j(r)φk(r)φl(r) dr

= 2π~ωhoa2
ho

∞∑
i,j,k,l=1

〈ψ|â†i â
†
j âkâl|ψ〉

a

a3
ho

Iijkl

∝ (N~ωho)
Na

aho
, (6.3)

where in the second line we have nondimensionalized the integral and in the third line we
have replaced the expectation value of the ladder operators with N2, which is correct to
leading order in the large N limit. Using dimensional analysis, we can guess a form for the
equivalent expectation value for a three-body interaction:

〈ψ|Ĥ3|ψ〉 ∝ ~ωhoa2
ho

∞∑
i,j,k,l,m,n=1

〈ψ|â†i â
†
j â
†
kâlâmân|ψ〉

a4

a6
ho

Iijklmn

∝ (N~ωho)
(
Na

aho

)2(
a

aho

)2

. (6.4)
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Similarly, for an m-body interaction, we have

〈ψ|Ĥm|ψ〉 ∝ (N~ωho)
(
Na

aho

)m−1(
a

aho

)2(m−2)

, (6.5)

so that a Hamiltonian that included all orders of interaction would look like

〈ψ|Ĥ2 + Ĥ3 + · · · |ψ〉 ∝ (N~ωho)
∞∑
m=2

(
Na

aho

)m−1(
a

aho

)2(m−2)

. (6.6)

A necessary (although not sufficient) condition for one to ignore all but the two-body term
in this series is for each subsequent term to be smaller than the previous one. Mathematically,
we have

d

dm

(
Nm−1

(
a

aho

)3m−5
)
< 0, (6.7)

which leads to
a <

aho
N1/3

. (6.8)

Thus, we can use this limit to define “large a” as the regime in which we may need to take
into account three- and higher-body collisions in our atom interactions.

2. Two-mode approximation The authors of [42] derive a condition under which
the two-mode approximation is valid, which is when the interactions produce only small
modifications to the ground state properties of the individual potential wells:

~ω0 � N |U0|V −1
eff , (6.9)

where U0 = 4π~2a/m = 4π~ωhoaa2
ho and V −1

eff =
∫
|u0(r)|4 dr, where u0(r) is the effective

single particle ground state for a single well. For our situation, we can approximate u0(r) as
the ground state of a 3D harmonic oscillator potential, with the x and y frequencies given by
ωho and the z frequency given by

√
4αLωho. Then,

V −1
eff =

1

2πa3
ho

√√
αL

π
, (6.10)

and we estimate that the two-mode model should be valid as long as

a� aho
N

√
π

4L
√
α
. (6.11)
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3. Negligible depletion approximation When we introduced depletion in Sec-
tion 2.4.1, we discussed the idea due to Bogoliubov that one can expand the double well
Hamiltonian in terms of fluctuations around a single condensate wavefunction in order to
determine the occupation of the condensed state as a function of scattering length for a
homogeneous system. We repeat the result, Eq. (2.4.1), here:

n0 = 1− 8

3

√
na3

π
+ · · · , (6.12)

We see that the depletion is negligible (i.e. n0 ≈ 1) when

a� n−1/3, (6.13)

where n is the atom density. In the context of an inhomogeneous system, it is reasonable to
assume that there will be appreciable depletion if this inequality is violated locally anywhere
in the condensate (i.e., there is a density somewhere that violates the inequality). Thus, “large
a” is defined in this context as the limit in which the system exhibits significant depletion as
a result of interactions.

Summary The three approximation-based constraints on a are

a <
aho
N1/3

(two-body interaction approximation valid) (6.14a)

a� aho
N

√
π

4L
√
α

(two-mode approximation valid) (6.14b)

a� n−1/3 (negligible depletion approximation valid) (6.14c)

We chose to run our simulations with, equivalently, values of a/aho ranging from 10−5 to 0.5,
values of N1/3a/aho ranging from 2× 10−5 to 4, and values of Na/aho ranging from 8× 10−5

to 32. This clearly extends past the range of validity of constraints (6.14a) and (6.14b). We
argued in Section 2.4.1 that n−1/3 ≈ 0.25aho, so these values of a should also extend past the
range of validity of constraint (6.14c). Thus, our Monte Carlo simulations, which one can
think of as infinite-mode calculations with arbitrary N -body hard sphere collisions, should
exhibit new physics for the larger simulated values of a compared to the multimode models.

To relate these values to what is achievable in the laboratory, we again make use of the
experiment described in [26] (as we did in Section 2.2.1 when describing the external potential).
In this experiment, N ≈ 105 23Na atoms were trapped in a double well with aho = 845 nm.
Additionally, in the experiment described in [68], magnetic Feshbach resonances were used
to tune the scattering length of 23Na atoms between about 1.2 and 18 nm. Together, these
results imply that one can generate a 23Na BEC trapped in a double well with, equivalently,
a/aho ranging from 10−3 to 2× 10−2, values of N1/3a/aho ranging from 7× 10−2 to 1, and
values of Na/aho ranging from 100 to 2000. These values of a/aho and N1/3a/aho lie well
within the range of our simulations, while the experimentally achievable values of Na/aho
actually go beyond what our simulation achieve.
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Figure 6.1: The energy of the double well system as a function of time step β for a system of
N = 8 particles with a scattering length of a = 0.1 aho and an imaginary time path length
τ = 37.5ω−1

ho . A β almost as large as 0.1ω−1
ho is acceptable while still converging on the

small-β value of the energy.

6.1.2 Computational Parameters

In addition to physical parameters, we must also concern ourselves with parameters relating
to the PIGS algorithm. The most important of these are the time step β and the total
imaginary time τ (or, equivalently, the time step β and number of slices M). For a given set
of physical parameters, one can empirically determine the largest β and shortest τ required
to reach the ground state by observing the behavior of the energy of the system as a function
of β and τ .

To determine appropriate time step β to use for our simulations, we ran simulations with
a variety of physical parameters over a variety of β for constant τ . We expect that for a given
total imaginary time, the system’s energy should converge for low β. In practice, we find
that the maximum β for which the energy maintains the converged value is fairly insensitive
to physical parameters like N and a. Figure 6.1 shows an example of the energy convergence
as a function of β for N = 8, a = 0.1 aho, and τ = 37.5ω−1

ho . Based on these results, we chose
β = 0.0625 for our simulations.

The path length τ , on the other hand, is quite sensitive to the physical parameters, in
particular those that control the barrier strength. For weak barriers (L = aho and 2 aho)
τ = 25ω−1

ho (M = 400) is often enough to get good convergence to the ground state. However,
for strong barriers (L = 3 aho), we need up to τ = 200ω−1

ho (M = 3200), which can lead to
very long simulation times, especially if one takes into account the large number of iterations
required (around 107, for some of the worst situations) for the algorithm to overcome
correlations and produce good error bars. Moreover, observables like the energy tend to
converge for shorter τ than the main observables of interest, like the squeezing parameter S.
In practice, we decided which τ was sufficient for a given set of physical parameters by doing
a series of simulations with increasing τ until we achieved convergence for the observable of
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Figure 6.2: Monte Carlo results for the energy per particle E/N as a function of scattering
length a for three different potentials (L = aho, 2 aho, and 3 aho, from left to right). The
horizontal line indicates the energy of the single-body ground state in each geometry. The
error bars on all of these data are smaller than the size of the points.

interest.

6.2 Results
In this section, we will summarise and discuss our quantum Monte Carlo results.

To begin, we plot in Figure 6.2 the energy per particle E/N as a function of scattering
length a for the values of N , L, and α from Section 6.1.1. We see that in the limit of no
interactions, the energy per particle for all values of N become equal, as one would expect to
be the case. We also see that for large interaction strength, the energy per particle grows with
N . This is reasonable because a system with more particles has more pairwise interactions
per particle and therefore more overall energy per particle. The growth of E/N is roughly
linear in a and does not seem to depend much on the trap geometry.

In Figure 6.3, we plot the condensate density along the axis of the double well, ρz(z), as
a function of z for our usual set of physical parameters. Unsurprisingly, the density tends to
be higher where the potential is lower and vice versa, because it is energetically favorable for
the condensate to sit at the potential minima. Increases in both a and N tend to cause the
condensate to spread out, occupying higher potential regions than it would with small a and
N .

6.2.1 Squeezing Results

We now proceed to discuss our main squeezing results. In Figure 6.4 we plot the squeezing
parameter S as a function of a for PIGS simulations with the values of N , L, and α from
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Figure 6.3: Monte Carlo results for the condensate density in the z direction ρz(z) as a
function of coordinate z for three different particle numbers (N = 8, 32, and 64, from top to
bottom) and three different potentials (L = aho, 2 aho, and 3 aho, from left to right). Each
plot include data for four representative values of the scattering length a (10−4 aho, 0.01 aho,
0.1 aho, and 0.5 aho) that spanned the range of interaction strengths that we simulated.
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Section 6.1.1, along with comparisons to the equivalent nearly degenerate two-mode, exact
two-mode, and eight-mode models. We see that for the two weaker barriers (L = aho and
2 aho), the squeezing increases monotonically with a. However, for the strongest barrier
(L = 3 aho), this is not the case. For all values of N we simulated with this barrier strength,
S has a maximum for some value of a; this value decreases as N increases. Furthermore, for
larger values of N , the squeezing eventually reaches a minimum and increases again.

In Figure 6.4, we also indicate by vertical lines the values of a for which condition (6.14b)
should be satisfied. In general, we see that the models and the PIGS results agree well when
this condition is met but deviate as a increases. As one would expect, the nearly-degenerate
two-mode model deviates from PIGS first, followed by the exact two-mode model, and
then (for the cases where data is available) the eight-mode model. As we shall see, these
discrepancies help to shed light on the physics at play in the full many-body treatment of the
system provided by PIGS.

Discrepancy Between PIGS and Multimode Models

Whether the models tend to over- or underestimate the PIGS results for large a depends on
the strength of the double well barrier (i.e., the value of L): for strong barriers (L = 3 aho),
we find less squeezing the more accurate the model (i.e., when going from nearly-degenerate
two-mode to exact two-mode to exact eight-mode to PIGS), whereas for weak barriers
(L = aho), we find the opposite (ignoring the nearly-degenerate two-mode curve since that
model assumes a strong barrier to cause the ground and first excited states to be nearly
degenerate with each other). The intermediate-strength case (L = 2 aho) is a “crossover”
between the other two cases, where the models and PIGS more closely agree. We propose
two mechanisms to account for the discrepancies between the exact two-mode model and the
PIGS data.

1. Occupation of higher modes The first mechanism has to do with avenues for
reducing the interaction energy of the ground state. As the strength of repulsive interactions
increases, the ground state has to change to minimize its energy given the value of a, and
this of course causes S to change with a. Recall the argument from Section 2.3 that strong
repulsive interactions should suppress number fluctuations (and hence increase squeezing)
because configurations with many particles on one side of the double well are disfavored due
to their large interaction energy. This argument assumes that equalizing the difference in
atoms between the two wells is the dominant mechanism that the system uses to reduce its
interaction energy.

However, the behavior of the eight-mode ground state suggests another way. By comparing
the top row of Figure 3.3 with Figure 4.7, we see that number fluctuations, which correlate
with the spread of the ground state across values of n, are less suppressed for the eight-mode
model. At the same time, Figure 4.8 illustrates that the eight-mode ground state involves
increasingly large occupation of modes in the n = 2 energy level as a increases. This suggests
that, given more than the two n = 1 modes, the ground state favors the occupation of higher
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Figure 6.4: Squeezing parameter S vs. scattering length a for four different particle numbers
(N = 8, 16, 32, and 64, from top to bottom) and three different potentials (L = aho, 2 aho,
and 3 aho, from left to right). The plots include results from the nearly degenerate two-mode
model, the exact two-mode model, the eight-mode model, and the PIGS simulations. Vertical
lines indicate the values of a below which we expect the two-mode model to be valid. The
L = 3 aho plots have a logarithmic S-axis, while the other plots have a linear S-axis.
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modes and less explicit suppression of number fluctuations as a increases. If we think of
PIGS conceptually as an “infinite-mode” model, then we would expect similar behavior in
our simulations.

How does this impact squeezing? If there is less explicit suppression of number fluctuations,
then by definition there is less squeezing. Additionally, there is another way in which this
mechanism reduces squeezing. In Section 3.3.1, we defined the quantity Smax, which sets the
maximum amount of squeezing possible given a particular double well geometry; the more
that the modes encroach into the “wrong” side of the double well, the smaller Smax. Recall
that certain modes with higher n (for example, the mode with nlm = 210) tend to have more
such encroachment than the n = 1 modes, which implies that they can support less squeezing
(see Table 4.2 for comparisons of Smax). Hence, when strong repulsion drives particles into
modes of higher n, it is driving some of them into modes with smaller Smax. Therefore, this
will reduce squeezing compared with the two-mode model, in which all particles have n = 1.

2. More two-body tunneling terms The second mechanism has to do with the types
of two-body tunneling terms present in the Hamiltonian due to the presence of higher modes.
Recall from Section 3.4.2 that for large a and small L, two-particle tunneling terms dominate
the dynamics of the system. In the two-mode model, these tunneling terms couple even-
numbered Fock states to other even-numbered Fock states (and likewise for odd-numbered
states). This forces the ground state to occupy the even Fock states only (which we referred
to as the striped configuration because of the pattern exhibited in the bottom left panel
of Figure 3.3), which causes large number fluctuations and hence little squeezing. The
availability of higher modes changes this situation by dramatically increasing the variety
of two-particle tunneling terms in the Hamiltonian; in principle, two particles can tunnel
from any two modes to any other two modes as long as the total value of Lz is conserved.
Hence, the “alternating n” restriction is lifted, and the ground state can have contributions
from (multi-mode) Fock states with any value of the difference in the number of particles
occupying left and right modes. This will lead to a reduction in the occupation of modes
with large values of that difference, and hence squeezing will be greater than predicted by
the two-mode model.

Note that this second mechanism varies in importance depending on the value of L. For
small L, it operates as described above. However, for large L, tunneling between the wells is
highly suppressed for all modes. In the two-mode case, this drives the ground state towards
|N/2〉, an equal splitting of particles. The presence of higher modes has little effect on this
distribution, again because all tunneling between the wells is suppressed. Therefore, the
amount of squeezing will not be affected for large L. Contrast this with the first mechanism,
where from Figure 4.8 we see that modes with smaller Smax are occupied in about the same
amount regardless of the value of L.

Summary To summarize, the first mechanism tends to reduce the true amount of
squeezing compared with the two-mode model and is always relevant, while the second tends
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Figure 6.5: Monte Carlo results for the squeezing parameter S vs. Na (the product of the
number of atoms and the scattering length) for three different potentials (L = aho, 2 aho, and
3 aho, from left to right). The plots include all of the PIGS results from Figure 6.4.

to increase squeezing and is only important for small L. This is sufficient to explain the
pattern we see in the data in Figure 6.4: for small L, mechanism two dominates and the actual
amount of squeezing is greater than predicted by the two-mode model while the opposite is
true for large L.

Also note the lack of monotonicity in the L = 3 aho PIGS data. Since the second
mechanism is not relevant for such a high barrier strength, this effect is likely due to an
interplay between the reduction in number fluctuations (which increases squeezing) and the
occupation of higher n modes (which reduces squeezing) as the strength of the repulsive
interactions increases.

Validity of the Two-Body Interaction Approximation

In Figure 6.5 we plot the same PIGS squeezing data as in Figure 6.4, except that we plot it
as a function of Na for each value of L. The most striking feature of this plot is that the data
for the various values of N overlap each other (except that the N = 8 data for the strongest
barrier (L = 3 aho) shows slightly more squeezing than the data for the other values of N for
large Na). In other words, we have found that S is a function of the product Na to good
approximation for the potentials and ranges of N and a presented here.

In the discussion that led to condition (6.14a), we determined that the only situation in
which the interaction Hamiltonian depends on the product Na is the one in which only two-
body interactions are relevant to the physics. If higher-body interactions play a significant role,
then the interaction Hamiltonian depends in a more complicated way on N and a. Combined
with the data in Figure 6.5, this observation implies that only two-body interactions are
relevant for the squeezing of the double well system in the parameter regime presented here.
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Given the lack of evidence for higher-body interactions in our data, one would expect
that the values of N and a sampled would obey condition (6.14a), which says that three- and
higher-body interactions should be suppressed as long as

N1/3a < aho. (6.15)

The data largely obey this condition, with the exception of one data point for N = 8, one for
N = 16, two for N = 32, and three for N = 64. Even the few points for which this condition
is violated could potentially be saved via the following observation. When we derived the
N dependance for the expectation value of the m-body interaction Hamiltonian (Eq. (6.5)),
we assumed that the part of the expectation value that involved the ladder operators would
become Nm. However, a detailed calculation would actually result in a value smaller than
that (for example, in the Gross-Pitaevskii equation (2.40), the two-body interaction term
has a coefficient proportional to N(N − 1), not N2). This reduction in the “effective N ” that
should go into condition (6.14a) may make enough of a difference that all of our data ends
up in the two-body interaction regime.

The observation that only two-body interactions are relevant in our Monte Carlo results
is non-trivial because the form of the hard sphere propagator used in the PIGS simulations,
Eq. 5.66, takes into account the interactions of all of the particles with each other simulta-
neously. Thus, this allows for any number of particles to interact strongly with each other
if the simulation’s update methods generate and accept a configuration where that number
of particles are in close proximity to each other. Contrast this with the multimode models,
in which the form of the Hamiltonian itself precludes interactions between more than two
bodies.

6.2.2 Fragmentation Results

We now move on to our fragmentation and depletion results. In Figure 6.6 we plot the
fragmentation parameter F as a function of a for PIGS simulations with the values of N , L,
and α from Section 6.1.1 (except that we do not have N = 64 data), along with comparisons
to the equivalent exact two-mode and eight-mode models. For weak barriers (L = 2 aho
and 3 aho), there is a relatively modest amount of fragmentation at large a. For L = 3 aho
and small N , there is a relatively large amount of fragmentation for large a. The amount
of fragmentation decreases with increasing N . Additionally, as in the squeezing plots, the
amount of fragmentation present does not vary monotonically with a.

In Figure 6.7 we plot the depletion parameter D as a function of a in the same way as
we plotted F vs. a in Figure 6.6. We see a modest increase in depletion of comparable size
across all plots for large values of a.

In both the fragmentation and depletion plots, we indicate by vertical lines the values of a
for which condition (6.14b) should be satisfied (recall that this is the condition under which
the two-mode model should be sufficient to describe the physics of the system). As with
the squeezing data, the models and the PIGS results agree well when condition (6.14b) is
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Figure 6.6: Monte Carlo results for the fragmentation parameter F vs. scattering length a
for four different particle numbers (N = 8, 16, 32, and 64, from top to bottom) and three
different potentials (L = aho, 2 aho, and 3 aho, from left to right). The plots include results
from the exact two-mode model, the eight-mode model, and the PIGS simulations. Vertical
lines indicate the values of a below which we expect the two-mode model to be valid.

satisfied but deviate as a increases. This deviation takes the form of less fragmentation than
predicted in the multimode models. In terms of depletion, we see less than in the eight-mode
model but more than zero, which is all that is possible for the two-mode model.

Finally, we plot the first and second natural orbitals, φ0(z) and φ1(z), in Figures 6.8
and 6.9, respectively. These orbitals look similar to the single-body ground and first excited
states of the double well (see Figure 3.1), especially for small N and a. As is the case for the
overall density in Figure 6.3, increases in both a and N tend to cause the natural orbitals to
broaden, occupying regions where the potential is larger.

For L = 2 aho and 3 aho, the natural orbitals φ1(z) plotted in Figure 6.9 are rather noisy;
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Figure 6.7: Monte Carlo results for the depletion parameter D vs. scattering length a for four
different particle numbers (N = 8, 16, 32, and 64, from top to bottom) and three different
potentials (L = aho, 2 aho, and 3 aho, from left to right). The plots include results from the
exact two-mode model, the eight-mode model, and the PIGS simulations. Vertical lines
indicate the values of a below which we expect the two-mode model to be valid.
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indeed, we did not plot the a = 10−4 aho and 0.01 aho natural orbitals for those potentials
because they were so noisy as to be unrecognizable. For these potentials, the low amount of
fragmentation means that the OBDM contains very little information about natural orbitals
beyond φ0(z). Hence, when one numerically diagonalizes the OBDM matrix, one generates
noisy functions for the φ1(z) natural orbital and beyond. For L = 3 aho, however, there is
enough fragmentation in the system to recover smooth plots for φ1(z).

Discrepancy Between PIGS and Multimode Models

The deviation of the PIGS data from the multimode models is apparent in both the frag-
mentation and depletion data. In general, we see much less fragmentation than predicted by
the two-mode model, and we also see roughly the same amount of depletion in the system
regardless of N and L.

The reduction in fragmentation can be accounted for via both of the mechanisms described
in Section 6.2.1. As we discussed in Section 2.4.2, fragmentation in the double well system
increases the more “isolated” the wells are, that is, the less likely it is for a particle to tunnel
from one well to the other. This is the reason why potentials with larger L experience more
fragmentation. The first mechanism entails the occupation of modes with higher values
of n, some of which have more spillover into the “wrong” side of the double well than the
n = 1 modes. Hence, the occupation of these modes will lessen the isolation of the wells by
putting atoms in states that span both sides of the double well barrier. This will reduce
fragmentation.

Additionally, the structure of the two-mode fragmentation parameter Eq. (3.45a) is such
that F (2) is large when the ground state is striped, that is, when every other Fock state is
occupied. This is only possible for small L. The second mechanism involves the presence
of many two-body tunneling terms in the double well Hamiltonian due to the addition of
modes beyond n = 1, and these terms prevent the system from forming a striped state as we
discussed above. Hence, this effect causes a dramatic reduction in fragmentation compared
with the two-mode model for small L.

Finally, we comment on the degree of depletion seen in the PIGS data. From Bogoliubov’s
analysis, we know that depletion begins to become significant in a homogeneous BEC when
the quantity an1/3 approaches 1 (see condition (6.14c)). In Figure 6.10, we plot this quantity
for our PIGS data as a function of the scattering length. We approximate n as the maximum
value of the quantity Nρx(x)ρy(y)ρz(z), where ρi is the single-body density in the i direction,
and we choose the maximum value because depletion will be dominated by the parts of the
BEC where the density is greatest. The figure illustrates that an1/3 is very close to 1 for
large values of a and that n(a) is essentially independent of N and L. This is all completely
consistent with the depletion results we see in Figure 6.7.
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Figure 6.8: Monte Carlo results for the first natural orbital in the z direction φ0(z) as a
function of coordinate z for three different particle numbers (N = 8, 16, and 32, from top to
bottom) and three different potentials (L = aho, 2 aho, and 3 aho, from left to right). Each
plot include data for four representative values of the scattering length a (10−4 aho, 0.01 aho,
0.1 aho, and 0.5 aho) that span the range of interaction strengths that we simulated.
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Figure 6.9: Monte Carlo results for the second natural orbital in the z direction φ1(z) as a
function of coordinate z for three different particle numbers (N = 8, 16, and 32, from top to
bottom) and three different potentials (L = aho, 2 aho, and 3 aho, from left to right). Each
plot include data for two values of the scattering length a (0.1 aho and 0.5 aho). The L = 3 aho
plots additionally include data for two other values of a (10−4 aho and 0.01 aho) although the
resulting plots are so similar that they overlap almost completely. All together, there four
values of a span the range of interaction strengths that we simulated.
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Figure 6.10: Monte Carlo results for the dimensionless quantity an1/3 vs. scattering length a
for four different particle numbers (N = 8, 16, 32, and 64) and three different potentials
(L = aho, 2 aho, and 3 aho, from left to right). The condition an1/3 � 1 specifies the condition
under which depletion should be negligible in a homogeneous BEC. Notice that the relationship
between an1/3 and a is essentially unaffected by changes in N or L.

6.3 Conclusions and Outlook
In this work, we made a detailed study of the squeezing and fragmentation exhibited by
the ground state of an ultracold, bosonic atomic gas in a double well trap. While these
properties have been studied previously in the context of mean-field and two-mode models,
we have greatly extended this analysis here by more deeply studying the two-mode model,
by investigating squeezing and fragmentation phenomena in a recently-proposed eight-mode
model, and by using quantum Monte Carlo methods to simulate the system for a variety
of particle number, interaction strengths, and double well trap geometries. We discovered
a number of interesting and surprising facts about these systems, including the fact that
squeezing and fragmentation do not monotonically increase with interaction strength.

The observations and intuition about the double well system that we have derived from
this study can be summarized as an updating of the intuitive picture of how squeezing
and fragmentation in these systems come about. Recall that the suppression of number
fluctuations corresponds to increased squeezing and the suppression of tunneling corresponds
to increased fragmentation. Both the old and the new picture start the same way:

The ground state of the noninteracting double well is a product of the single-body
ground state of each particle, and these single-body states each occupy both wells
equally. Hence, if one were to measure the number of atoms in the left well minus
the number in the right well, one could get any value from N to −N . Therefore,
number fluctuations are large and squeezing is small. An equivalent way to think
of this situation is that the structure of the noninteracting ground state is such
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that tunneling is strong, and therefore fragmentation is small. In fact, both S
and F are defined to be 0 in the noninteracting case.

In the old picture, the introduction of repulsive interacting proceeds like this:

The introduction of repulsive interactions causes the system to minimize its
interacting energy by suppressing configurations in which many particles are in
one well and few are on the other. This reduces number fluctuations and increases
squeezing. Additionally, moving towards a configuration in which N/2 particles
are locked into each side of the double well suppresses tunneling and increases
fragmentation. These effects increase with increasing interacting strength.

whereas in the new picture, it proceeds like this:

The introduction of repulsive interactions causes the system to minimize its
interacting energy, but it can do this in several ways. One way is to suppress
configurations in which many particles are in one well and few are on the other.
This increases squeezing and fragmentation as in the old picture. Additionally,
the system can also reduce its interaction energy by promoting atoms to modes
in higher energy levels (n > 1). One can approximate these modes as each being
localized in one of the two wells, although they will extend into the “wrong”
well based on the strength of the double well barrier. There are some modes
in each energy band n > 1 that extend into the wrong well much further than
the n = 1 modes. Hence, a ground state dominated by modes with larger
values of n naturally have larger number fluctuations and tunneling than ground
states dominated by n = 1 modes, and therefore they exhibit less squeezing and
fragmentation. These two effects compete with each other to determine the overall
amount of squeezing and fragmentation, which is not monotonic in many cases.

Thus, for sufficiently large enough values of a, one cannot appeal to either mean-field or
multi-mode modes to correctly predict the amount of squeezing and fragmentation exhibited
by the system. Instead, the full machinery of quantum Monte Carlo must be deployed.

Finally, we would like to connect back with one of the main motivations of this project
as discussed in Section 1.1: the application of squeezed states to reduce the measurement
uncertainty of atom interferometers. In general, the more squeezed the states used in the
interferometers, the smaller the uncertainty. One way to generate a highly squeezed state is
to use a Feshbach resonance to tune the interaction strength of the atoms in a BEC, thereby
changing the amount of squeezing exhibited by the system. But, what interaction strength is
the one that maximizes squeezing? In the context of the old picture described above, the
answer is simple: stronger repulsive interactions mean more squeezing, so one should tune
a to as large a value as one can. However, we have shown that the real picture is more
complicated: squeezing does not increase monotonically with interaction strength in many
situations, and so there is some optimal value of a that maximizes squeezing that one cannot
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predict through the use of multimode models but must instead calculate using an exact
method like PIGS. With the increasingly rapid advances of experimental methods for the
study Bose-Einstein condensates, we look forward to laboratory confirmation of the results of
this study in the near future.
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Appendix A

Entanglement Entropy

In this Appendix, we discuss a proposed extension of the work discussed in this dissertation:
the computation of the entanglement entropy between the two halves of the ground state of
the double well system using a new PIGS method that we propose below.

A.1 Introduction
This dissertation focuses on the study of two particular ground state quantum properties,
squeezing and fragmentation, but there are of course many other properties of a quantum
system that one might be interested in understanding. One such property that has garnered
significant attention is entanglement. At a fundamental level, entanglement is the main
phenomenon that distinguishes quantum from classical systems, so one can potentially gain
significant insights into the nature of quantum mechanics and quantum information by
studying it. However, it is not entirely clear how one can directly measure the entanglement
in a quantum system experimentally, since it is a fundamentally nonlocal quantity.

One recent proposal for estimating the entanglement between two subregions of a quantum
system involves measuring the fluctuations of observables that are relatively easily accessible
to experiment [104, 105]. In particular, one can relate the particle number fluctuations across
the boundary between two entangled subregions of a free fermion system in any number
of dimensions to the system’s Rényi entropy Sn, which is a family of related quantities
indexed by an integer n that can be used as a measure of the entanglement between the
subregions [106, 107]. One problem with this method, however, is that the exact relationship
between the number fluctuations and the Rényi entropy is not known for interacting systems,
so one does not know how strong the interactions can become before laboratory estimates of
the entanglement based on the fluctuations become unreliable.

This suggests that one should attempt to simulate a system of interest using quantum
Monte Carlo methods to measure the Rényi entropy directly. However, until very recently, it
was not at all clear how one could do this. The first successful proposal was implemented
in a lattice system, specifically a Heisenberg chain, and involved the introduction of a new
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operator, called the swap operator, whose expectation value is related to the S2 Rényi
entropy [108]. This method was very recently generalized for use in continuous-space QMC
simulations of fermions [109–111]. A different method which does not rely on the swap
operator has also been developed, but only for finite-temperature systems [112]. We now
propose a generalization of the swap operator method suitable for studying the entanglement
exhibited by the bosonic double well system using the PIGS QMC method. Using this method,
the entanglement entropy for a system like the double well can be computed exactly, and the
result can be compared to the entanglement entropy estimated via number fluctuations to
reveal the limit beyond which this estimate fails.

A.2 Estimation of Entanglement from Number
Fluctuations

We will first discuss a method for estimating entanglement, via the Rényi entropy, from the
number fluctuations. Reference [106] provides an excellent and thorough overview of the
computation of Rényi entropy from the fluctuations of several different quantities for a variety
of fermionic systems.

The starting point for these estimates is a system in a pure quantum state |ψ〉 that has
been bi-partitioned into two subsystems, A and B. One can compute the reduced density
matrix of subsystem A by tracing over the degrees of freedom in subsystem B:

ρ̂A = TrB |ψ〉 〈ψ| . (A.1)

Then the Rényi entanglement entropy is defined as

Sn(ρ̂A) =
1

1− n
ln(Tr(ρ̂nA)), (A.2)

which reduces to the von Neumann entropy in the n→ 1 limit:

S1(ρ̂A) = −Tr(ρ̂A ln ρ̂A). (A.3)

For a system in which particles can pass through the boundary between the A and B
subregions, the fluctuations in the number of particles in the A subregion is related to the
Rényi entropy. In particular, one can define the cumulant

Cn =

(
−i ∂
∂λ

)n
ln 〈eiλN̂A〉

∣∣∣∣
λ=0

=
∑

∑
1≤i≤n nmn=n

(−1)m1+···+mn−1(m1 + · · ·+mn − 1)!n!

m1! · · ·mn!

∏
1≤j≤n

(
1

j!
〈N̂ j

A〉
)mj

(A.4)

where N̂A is the operator that measures the number of particles in the A subregion and where
we derive the second line by using Faà di Bruno’s formula [113]. The sum in this formula
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is taken over all sets of non-negative integers {m1, . . . ,mn} that satisfy the given condition,∑
1≤i≤n nmn = n. The Rényi entropy is then given by [114]

Sn =
2

n− 1

∞∑
k=1

1

k!

(
2πi

n

)k
ζ

(
−k, n+ 1

2

)
Ck, (A.5)

where ζ(p, q) is the Hurwitz zeta function [115]. So, if one knows all of the cumulants of the
system, and therefore everything about the number fluctuations, one can compute the value
of the Rényi entropy for any n.

A.2.1 Application to Double Well System

In the case of the double well system, the natural A and B subsystems are the left and right
sides of the double well. In that case, we can identify N̂A with L̂ (defined in Eq. (2.52)), and
a straightforward calculation shows that

C2 = σ2
n =

N

4
(1− S). (A.6)

This is, of course, a quantity that our Monte Carlo simulation can already compute. Moreover,
higher cumulants can be computed in terms of higher powers of 〈L̂i〉, which are all trivial
to compute in the simulation as well. However, remember that Eq. (A.5) relates the Rényi
entropy to the cumulants for a noninteracting system of fermions. In order to make this
computation applicable to a BEC in a double well, one would have to derive the equivalent
expression for a noninteracting system of bosons. This will be a topic for future work.

A.3 Computation of Entanglement with Quantum
Monte Carlo

We now describe a method for computing the Rényi entropy directly using quantum Monte
Carlo. Reference [108] describes the initial implementation of this method, which involves the
introduction of a new swap operator, which we will denote as Ŝ. After a general discussion
of the technique, we will specialize to the case of the bosonic double well system.

The swap operator is defined on a space that includes the system of interest and a copy
of that system that does not interact with the original. The Hamiltonian for the doubled
system is given by Ĥ = Ĥ ⊕ Ĥ, where Ĥ is the Hamiltonian for the system or its copy,
which are identical. The states in this space are tensor products of the states in each copy:
|Ψ〉 = |ψ〉 ⊗ |ψ̃〉, where the tilde indicates the state of the copy. Each system is divided into
two subregions: A and B. If we assume that the state of each system can be decomposed
into a product of a state in the A region and a state in the B region, then the swap operator
acting on a generic state in the total space interchanges the states associated with the A
regions:

Ŝ |ψA〉 |ψB〉 ⊗ |ψ̃A〉 |ψ̃B〉 = |ψ̃A〉 |ψB〉 ⊗ |ψA〉 |ψ̃B〉 . (A.7)
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Suppose that both the system and its copy are in the same state |ψ〉. Then the overall
state of the doubled system is given by |Ψ〉 = |ψ〉 ⊗ |ψ〉, and one can show that [108]

S2(ρ̂A) = − ln(Tr(ρ̂2
A)) = − ln 〈Ψ|Ŝ|Ψ〉 . (A.8)

So computing the expectation value of Ŝ in the doubled system is equivalent to computing
the S2 Rényi entropy.

A.3.1 Application to PIGS

Recall that in PIGS, we compute expectation values of operators in (an approximation to)
the system’s ground state. To generalize the PIGS method we describe in Chapter 5 for use
with the swap operator, we run a simulation that keeps track of 2N particles, where the first
N are the particles in the original system and the last N are the particles in the copy. We
denote a position eigenstate of the system by the 6N -dimensional state vector |R〉, so that

|R〉 = |r1, . . . , rN〉 ⊗ |r̃1, . . . , r̃N〉 . (A.9)

We impose the same real, N -body, symmetrized trial function on each copy, so that the overall
trial function can be written as |ΨT (R)〉 = |ψT (R)〉 ⊗ |ψT (R̃)〉. Because of the structure of
the Hamiltonian Ĥ, the imaginary time propagator for the doubled system is given by

G(R,R′, β) = 〈R|e−βĤ/~|R′〉

= 〈R|e−βĤ/~ ⊗ e−βĤ/~|R′〉

= 〈R|e−βĤ/~|R′〉 〈R̃|e−βĤ/~|R̃′〉
= G(R,R′, β)G(R̃, R̃′, β). (A.10)

It is a product of the imaginary time propagators for each system individually. With these
components in hand, we can construct the analogous expression to Eq. (5.7) for the swap
operator in the doubled system:

〈χ|Ŝ|χ〉 =

∫
ΨT (R0)

M−1∏
i=0

G(Ri,Ri+1, β) 〈RM |Ŝ|RM+1〉

×
2M∏

j=M+1

G(Rj,Rj+1, β)ΨT (R2M+1) dR0 . . . dR2M+1, (A.11)

To understand how to simplify the expression for 〈χ|Ŝ|χ〉, we first need to understand
how the swap operator acts on |R〉. Suppose that the system is in a state such that particles
1 through α are in the A region of the system and particles 1 through α̃ are in the A region
of the copy. Then we can write |R〉 as

|R〉 = |r1, . . . , rα〉 |rα+1, . . . , rN〉 ⊗ |r̃1, . . . , r̃α̃〉 |r̃α̃+1, . . . , r̃N〉 , (A.12)
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where we allow α and α̃ to range from 0 to N and we use |Ω〉 to denote the “empty” state
that results from all of the particles being in either the A region (α or α̃ = N) or the B
region (α or α̃ = 0). With this form of |R〉, the swap operator simply interchanges the states
that correspond to the A regions:

Ŝ |R〉 = Ŝ |r1, . . . , rα〉 |rα+1, . . . , rN〉 ⊗ |r̃1, . . . , r̃α̃〉 |α̃ñ+1, . . . , r̃N〉
= |r̃1, . . . , r̃α̃〉 |rα+1, . . . , rN〉 ⊗ |r1, . . . , rα〉 |r̃α̃+1, . . . , r̃N〉 . (A.13)

We can use this result to compute 〈R|Ŝ|R′〉:

〈R|Ŝ|R′〉 = (〈r1, . . . , rα| 〈rα+1, . . . , rN | ⊗ 〈r̃1, . . . , r̃α̃| 〈r̃α̃+1, . . . , r̃N |)
×
(
|r̃′1, . . . , r̃′α̃′〉 |r′α′+1, . . . , r

′
N〉 ⊗ |r′1, . . . , r′α′〉 |r̃′α̃′+1, . . . , r̃

′
N〉
)

= 〈r1, . . . , rα|r̃′1, . . . , r̃′α̃′〉 〈rα+1, . . . , rN |r′α′+1, . . . , r
′
N〉

× 〈r̃1, . . . , r̃α̃|r′1, . . . , r′α′〉 〈r̃α̃+1, . . . , r̃N |r̃′α̃′+1, . . . , r̃
′
N〉 . (A.14)

This expression is nonzero only when α = α̃ = α′ = α̃′. In that situation, it simplifies to

〈R|Ŝ|R′〉 =
α∏
i=1

δ(ri − r̃′i) δ(r̃i − r′i)
N∏

j=α+1

δ(rj − r′j) δ(r̃j − r̃′j)

= δ(RA − R̃′A) δ(R̃A −R′A) δ(RB −R′B) δ(R̃B − R̃′B), (A.15)

where RA = {r1, . . . , rα}, RB = {rα+1, . . . , rN}, and so on.
We can use this result to simplify integrals of the form

I =

∫
f(R)g(R′) 〈R|Ŝ|R′〉 dR dR′, (A.16)

of which 〈χ|Ŝ|χ〉, Eq. (A.11), is an example. Notice that this quantity involves integration
over four sets of particle coordinates: R, R̃, R′, and R̃′. The integral for each individual
coordinate can be expressed as the sum of an integral over the A region plus an integral over
the B region. Hence, the integration region for the entire integral can be broken up into 24N

subregions, where for each subregion each of the 4N particle position vectors is integrated
over either region A or region B. The total integral is the sum of these subintegrals.

For any given subintegral, a certain number of coordinates in each of R, R̃, R′, and R̃′ are
integrated over the A region, and in general these numbers are different. However, because of
the form of 〈R|Ŝ|R′〉, the only nonzero subintegrals are the ones in which these four numbers
are the same; let’s call that number α. Because of Bose symmetry, all subintegrals with the
same α are equal to each other. For a given α and N , the number of such equivalent integrals
is
(
N
α

)4
. Since they are all equivalent, we can choose one to be the single integral that we

compute; we choose the integral in which the first α particles in each set of coordinates
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are integrated over region A. Then, for convenience, we define a compact notation for this
integration:

∫
N,α

f(R) dR dR̃ =

N integrals︷ ︸︸ ︷∫
A

· · ·
∫
A︸ ︷︷ ︸

α integrals

∫
B

· · ·
∫
B

N integrals︷ ︸︸ ︷∫
A

· · ·
∫
A︸ ︷︷ ︸

α integrals

∫
B

· · ·
∫
B

f(R) dR dR̃. (A.17)

With this definition, we can simplify Eq. (A.16):

I =

∫
f(R)g(R′) 〈R|Ŝ|R′〉 dR dR′

=
N∑
α=0

(
N

α

)4 ∫
N,α

∫
N,α

f(R)g(R′) 〈R|Ŝ|R′〉 dR dR′

=
N∑
α=0

(
N

α

)4 ∫
N,α

∫
N,α

f(R)g(R′)δ(RA − R̃′A) δ(R̃A −R′A)δ(RB −R′B) δ(R̃B − R̃′B) dR dR′

=
N∑
α=0

(
N

α

)4 ∫
N,α

f(R)g(Rα) dR, (A.18)

where
Rα = {R̃A, RB, RA, R̃B}, (A.19)

is the swapped version of R = {RA, RB, R̃A, R̃B}, and the α subscript reminds us that the
exact set of coordinates that are swapped (i.e., the set of coordinates that constitute RA)
depends on α. As written, it is not possible to compute Eq. (A.18) using PIGS because of
the restricted integration region. However, this is easy to fix. By defining functions A(r) and
B(r) such that

A(ri) =

{
1 ri in region A
0 otherwise

(A.20a)

B(ri) =

{
1 ri in region B
0 otherwise

, (A.20b)

we can replace the restricted integration with a function ON(R):

I =

∫
f(R)ON(R) dR, (A.21)

where

ON(R) =
N∑
α=0

(
N

α

)4

g(Rα)

(
α∏
i=1

A(ri)A(r̃i)
N∏

j=α+1

B(rj)B(r̃j)

)
. (A.22)
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Finally, we can use this to reexpress 〈χ|Ŝ|χ〉 as

〈χ|Ŝ|χ〉 =

∫
ΨT (R0)

M−1∏
i=0

G(Ri,Ri+1, β)ON(RM ,RM+1)

×
2M−1∏
j=M+1

G(Rj,Rj+1, β)ΨT (R2M) dR0 . . . dR2M . (A.23)

where

ON(RM ,RM+1) =
N∑
α=0

(
N

α

)4

G(Rα,M ,RM+1, β)

(
α∏
i=1

A(ri)A(r̃i)
N∏

j=α+1

B(rj)B(r̃j)

)
.

(A.24)
Therefore, we can compute the expectation value of the swap operator with PIGS by sampling
the observable ON(RM ,RM+1) over a probability distribution

π(X ) = ΨT (R0)ΨT (R2M)
M−1∏
i=0

G(Ri,Ri+1, β)
2M−1∏
j=M+1

G(Rj,Rj+1, β), (A.25)

and averaging the accepted values. In terms of update methods, one can use whatever
methods are appropriate to sample the single system (see the discussion of these methods
in Section 5.3.3) and apply them to the doubled system by randomly choosing whether to
update the system or its copy with each iteration of the Monte Carlo algorithm.

A.3.2 Application to Double Well System

To apply this to the double well system, we define the A subregion as the left half of the
double well and the B subregion as the right half. Then the functions A(ri) and B(ri) in
Eq. (A.24) are given by

A(ri) =

{
1 zi < 0

0 zi > 0
(A.26a)

B(ri) =

{
0 zi < 0

1 zi > 0
. (A.26b)

The challenges inherent in ergodically sampling the double well system, especially one with a
strong barrier, persist in this computation.

A.4 Summary
In this appendix, we discussed a possible extension to our double well project to study the
degree of entanglement exhibited by the system as a function of interaction strength. The



APPENDIX A. ENTANGLEMENT ENTROPY 139

main thrust of the extension would be to compare two different calculation of the S2 Rényi
entanglement entropy: one estimated calculation based on cumulants related to number
fluctuations and one exact calculation using quantum Monte Carlo. The main tasks that still
need to be done are:

• Derive the equivalent expression to Eq. (A.5) relating the cumulants and Rényi entropies
of a noninteracting bosonic system.

• Implement the PIGS method for calculating the expectation value of the swap operator
to directly compute the entanglement entropy of the double well system as a function
of interaction strength.



140

Bibliography

[1] M. Planck. “Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law
of Distribution of Energy in the Normal Spectrum)”. In: Annalen der Physik 309.3
(1901), pp. 553–563.

[2] S. N. Bose. “Plancks Gesetz und Lichtquantenhypothese (Planck’s law and the hy-
pothesis of light quanta)”. German. In: Zeitschrift für Physik 26.1 (1924), pp. 178–
181.

[3] A. Einstein. “Quantentheorie des einatomigen idealen Gases (Quantum theory of the
monatomic ideal gas)”. German. In: Sitzungsberichte der Preussischen Akademie der
Wissenschaften, Physikalisch-mathematische Klasse (1924), pp. 261–267.

[4] A. Einstein. “Quantentheorie des einatomigen idealen Gases, 2 Abhandlung (Quantum
theory of the monatomic ideal gas, part 2)”. German. In: Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1925), pp. 3–
14.

[5] F. London. “The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy”.
In: Nature 141 (Apr. 1938), pp. 643–644.

[6] F. London. “On the Bose-Einstein condensation”. In: Phys. Rev. 54 (11 Dec. 1938),
pp. 947–954.

[7] C. E. Hecht. “The possible superfluid behaviour of hydrogen atom gases and liquids”.
In: Physica 25.7–12 (1959), pp. 1159–1161.

[8] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
“Observation of Bose-Einstein condensation in a dilute atomic vapor”. In: Science
269.5221 (1995), pp. 198–201.

[9] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. “Bose-Einstein condensation in a gas of sodium atoms”. In:
Phys. Rev. Lett. 75 (22 Nov. 1995), pp. 3969–3973.

[10] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. “Evidence of Bose-Einstein
condensation in an atomic gas with attractive interactions”. In: Phys. Rev. Lett. 75 (9
Aug. 1995), pp. 1687–1690.



BIBLIOGRAPHY 141

[11] C. C. Bradley, C. A. Sackett, and R. G. Hulet. “Bose-Einstein condensation of lithium:
Observation of limited condensate number”. In: Phys. Rev. Lett. 78 (6 Feb. 1997),
pp. 985–989.

[12] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich. “Squeezed
states in a Bose-Einstein condensate”. In: Science 291.5512 (2001), pp. 2386–2389.

[13] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch. “Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms”. In: Nature
415.6867 (Jan. 2002), pp. 39–44.
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